Constructing Atomic Tungsten-Based Solid Frustrated-Lewis-Pair Sites with d-p Interactions for Selective CO2 Photoreduction

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Baorong Xu, Shicheng Luo, Weibo Hua, Hang Xiao, Ben Chong, Guocheng Yan, He Li, Honghui Ou, Bo Lin, Guidong Yang
{"title":"Constructing Atomic Tungsten-Based Solid Frustrated-Lewis-Pair Sites with d-p Interactions for Selective CO2 Photoreduction","authors":"Baorong Xu, Shicheng Luo, Weibo Hua, Hang Xiao, Ben Chong, Guocheng Yan, He Li, Honghui Ou, Bo Lin, Guidong Yang","doi":"10.1021/jacs.4c08953","DOIUrl":null,"url":null,"abstract":"Solid frustrated Lewis pair (FLP) shows remarkable advantages in the activation of small molecules such as CO<sub>2</sub>, owing to the strong orbital interactions between FLP sites and reactant molecules. However, most of the currently constructed FLP sites are randomly distributed and easily reunited on the surface of catalysts, resulting in a low utilization rate of FLP sites. Herein, atomic tungsten-based FLP (N···W<sub>SA</sub> FLP) sites are constructed for photocatalytic CO<sub>2</sub> conversion through introducing W single-atoms into polymeric carbon nitride. In the atomically dispersed N···W<sub>SA</sub> FLP, the electron-deficient W single-atom acts as the Lewis acid (LA), and the adjacent electron-rich N atom acts as the Lewis base. Through the combination of various characterizations, including pyridine-IR, in situ diffuse reflectance infrared Fourier transform spectroscopy, CO<sub>2</sub>-temperature programmed desorption, and theoretical calculations, the positive effects of N···W<sub>SA</sub> FLP on photocatalytic CO<sub>2</sub> reduction are well revealed. The N···W<sub>SA</sub> FLP can effectively adsorb CO<sub>2</sub> to form an unusual W–O–C–N structure with significant d-p orbital interactions, which leads to an interesting “push–push” electron transfer effect. The π back-donation from W 5d to the antibonding orbital (2π) of CO<sub>2</sub> realizes reverse electron transfer from the W single-atom to the O site, while the electrons are transferred from the electron-rich N site to the electropositive C site via Lewis acid–base interactions, therefore effectively breaking the C═O bond to activate CO<sub>2</sub> molecules and boost CO<sub>2</sub>-to-CO performance. This work provides a brand new route for the research on high-efficiency activation of small molecules based on single-atom-based FLP catalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"12 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c08953","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid frustrated Lewis pair (FLP) shows remarkable advantages in the activation of small molecules such as CO2, owing to the strong orbital interactions between FLP sites and reactant molecules. However, most of the currently constructed FLP sites are randomly distributed and easily reunited on the surface of catalysts, resulting in a low utilization rate of FLP sites. Herein, atomic tungsten-based FLP (N···WSA FLP) sites are constructed for photocatalytic CO2 conversion through introducing W single-atoms into polymeric carbon nitride. In the atomically dispersed N···WSA FLP, the electron-deficient W single-atom acts as the Lewis acid (LA), and the adjacent electron-rich N atom acts as the Lewis base. Through the combination of various characterizations, including pyridine-IR, in situ diffuse reflectance infrared Fourier transform spectroscopy, CO2-temperature programmed desorption, and theoretical calculations, the positive effects of N···WSA FLP on photocatalytic CO2 reduction are well revealed. The N···WSA FLP can effectively adsorb CO2 to form an unusual W–O–C–N structure with significant d-p orbital interactions, which leads to an interesting “push–push” electron transfer effect. The π back-donation from W 5d to the antibonding orbital (2π) of CO2 realizes reverse electron transfer from the W single-atom to the O site, while the electrons are transferred from the electron-rich N site to the electropositive C site via Lewis acid–base interactions, therefore effectively breaking the C═O bond to activate CO2 molecules and boost CO2-to-CO performance. This work provides a brand new route for the research on high-efficiency activation of small molecules based on single-atom-based FLP catalysts.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信