Heralded Optical Entanglement Generation via the Graph Picture of Linear Quantum Networks

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-12-18 DOI:10.22331/q-2024-12-18-1572
Seungbeom Chin, Marcin Karczewski, Yong-Su Kim
{"title":"Heralded Optical Entanglement Generation via the Graph Picture of Linear Quantum Networks","authors":"Seungbeom Chin, Marcin Karczewski, Yong-Su Kim","doi":"10.22331/q-2024-12-18-1572","DOIUrl":null,"url":null,"abstract":"Non-destructive heralded entanglement with photons is a valuable resource for quantum information processing. However, they generally entail ancillary particles and modes that amplify the circuit intricacy. To address this challenge, a recent work [16] introduced a graph approach for creating multipartite entanglements with boson subtractions. Nonetheless, it remains an essential intermediate step toward practical heralded schemes: the proposition of heralded subtraction operators in bosonic linear quantum networks. This research establishes comprehensive translation rules from subtraction operators to linear optical operators, which provides a seamless path to design heralded schemes with single photons. Our method begets enhanced or previously unreported schemes for the $N$-partite GHZ state with $2N$ photons, $N$-partite W state with $2N+1$ photons and superposition of $N=3$ GHZ and W states with 9 photons. Our streamlined approach can straightforwardly design heralded schemes for multipartite entangled states by assembling the operators according to the guidence of sculpting bigraphs, hence significantly simplifies the quantum circuit design process.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"13 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-12-18-1572","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-destructive heralded entanglement with photons is a valuable resource for quantum information processing. However, they generally entail ancillary particles and modes that amplify the circuit intricacy. To address this challenge, a recent work [16] introduced a graph approach for creating multipartite entanglements with boson subtractions. Nonetheless, it remains an essential intermediate step toward practical heralded schemes: the proposition of heralded subtraction operators in bosonic linear quantum networks. This research establishes comprehensive translation rules from subtraction operators to linear optical operators, which provides a seamless path to design heralded schemes with single photons. Our method begets enhanced or previously unreported schemes for the $N$-partite GHZ state with $2N$ photons, $N$-partite W state with $2N+1$ photons and superposition of $N=3$ GHZ and W states with 9 photons. Our streamlined approach can straightforwardly design heralded schemes for multipartite entangled states by assembling the operators according to the guidence of sculpting bigraphs, hence significantly simplifies the quantum circuit design process.
与光子的非破坏性预示纠缠是量子信息处理的宝贵资源。然而,它们通常需要辅助粒子和模式,从而放大了电路的复杂性。为了应对这一挑战,最近的一项研究[16]引入了一种用玻色子减法创建多方纠缠的图方法。尽管如此,它仍然是迈向实用预示方案的重要中间步骤:玻色子线性量子网络中预示减法算子的命题。这项研究建立了从减法算子到线性光学算子的全面转换规则,为设计单光子预示方案提供了一条无缝路径。我们的方法为具有 2N$ 光子的 N$ 部分 GHZ 状态、具有 2N+1$ 光子的 N$ 部分 W 状态以及具有 9 个光子的 N=3$ GHZ 和 W 状态的叠加产生了增强的或以前未报道过的方案。我们的简化方法可以根据雕刻大图的指导组装算子,直接设计多方纠缠态的预示方案,从而大大简化了量子电路的设计过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信