3W‐MultiHier: A Three Way Multi‐Hierarchical Model Enabled Deep Learning for Brain Tumor Classification in MRI Scans

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Asmita Dixit, Manish Kumar Thakur
{"title":"3W‐MultiHier: A Three Way Multi‐Hierarchical Model Enabled Deep Learning for Brain Tumor Classification in MRI Scans","authors":"Asmita Dixit, Manish Kumar Thakur","doi":"10.1002/adts.202400752","DOIUrl":null,"url":null,"abstract":"Accurate brain tumor detection and classification are vital for effective diagnosis and treatment planning in medical imaging. Despite advancements in deep learning, challenges such as multimodal complexity, small lesion segmentation, limited training data, and variability in tumor characteristics hinder precise tumor analysis in MRI scans. To address these issues, we propose the Three Way Multi‐Hierarchical Model (3W‐MultiHier) for tumor classification in MRI. 3W‐MultiHier employs a hybrid Capsule‐Transformer UNet (Capsule‐TransUNet) architecture, integrating capsule and transformer networks within the U‐Net framework. This enables the model to capture spatial hierarchies, long‐range dependencies, and global context, ensuring accurate tumor boundary segmentation. The model also incorporates Residual Network Version 2 ‐ Squeeze‐and‐Excitation Network (ResNetV2‐SENet), which excels at extracting complex features through deep hierarchical structures and feature recalibration. Additionally, the Vision Transformer ‐ Transfer Learning (ViT‐TL) pipeline enhances classification accuracy by leveraging fine‐grained hierarchical representations. Extensive evaluations on BraTS (2019, 2020, 2021) datasets demonstrate the superior performance of 3W‐MultiHier, achieving 99.8% accuracy with rapid training and low loss. These results highlight the model's efficiency in handling diverse datasets and its potential to improve clinical diagnostics by enabling precise, reliable brain tumor classification.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"72 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400752","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate brain tumor detection and classification are vital for effective diagnosis and treatment planning in medical imaging. Despite advancements in deep learning, challenges such as multimodal complexity, small lesion segmentation, limited training data, and variability in tumor characteristics hinder precise tumor analysis in MRI scans. To address these issues, we propose the Three Way Multi‐Hierarchical Model (3W‐MultiHier) for tumor classification in MRI. 3W‐MultiHier employs a hybrid Capsule‐Transformer UNet (Capsule‐TransUNet) architecture, integrating capsule and transformer networks within the U‐Net framework. This enables the model to capture spatial hierarchies, long‐range dependencies, and global context, ensuring accurate tumor boundary segmentation. The model also incorporates Residual Network Version 2 ‐ Squeeze‐and‐Excitation Network (ResNetV2‐SENet), which excels at extracting complex features through deep hierarchical structures and feature recalibration. Additionally, the Vision Transformer ‐ Transfer Learning (ViT‐TL) pipeline enhances classification accuracy by leveraging fine‐grained hierarchical representations. Extensive evaluations on BraTS (2019, 2020, 2021) datasets demonstrate the superior performance of 3W‐MultiHier, achieving 99.8% accuracy with rapid training and low loss. These results highlight the model's efficiency in handling diverse datasets and its potential to improve clinical diagnostics by enabling precise, reliable brain tumor classification.
准确的脑肿瘤检测和分类对于医学成像中的有效诊断和治疗计划至关重要。尽管深度学习取得了进步,但多模态复杂性、小病灶分割、有限的训练数据和肿瘤特征的可变性等挑战阻碍了对核磁共振扫描中肿瘤的精确分析。为了解决这些问题,我们提出了用于核磁共振成像中肿瘤分类的三向多层模型(3W-MultiHier)。3W-MultiHier 采用胶囊-变压器混合 UNet(Capsule-TransUNet)架构,在 U-Net 框架内集成了胶囊和变压器网络。这使模型能够捕捉空间层次、长程依赖性和全局背景,确保准确的肿瘤边界分割。该模型还采用了残差网络第 2 版--挤压和激发网络(ResNetV2-SENet),该网络擅长通过深度层次结构和特征重新校准来提取复杂特征。此外,视觉转换器--迁移学习(ViT-TL)管道通过利用细粒度分层表示提高了分类准确性。在 BraTS(2019、2020、2021)数据集上进行的广泛评估证明了 3W-MultiHier 的卓越性能,在快速训练和低损耗的情况下达到了 99.8% 的准确率。这些结果凸显了该模型处理多样化数据集的效率,以及通过实现精确、可靠的脑肿瘤分类来改善临床诊断的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信