{"title":"Hydration Pattern of Ionic Liquids in the Stabilization of Insulin Dimer: A Computational Perspective","authors":"Gopal Hema, Nallasivam Giri Lakshman, Kandhan Palanisamy, Muthuramalingam Prakash","doi":"10.1002/adts.202400943","DOIUrl":null,"url":null,"abstract":"Choline [Cho]‐based ionic liquids (ILs) are biodegradable and soluble and have shown strong application in the protein stabilization and drug delivery. In this work, the stability of the insulin dimer is investigated in the presence of [Cho]‐based ILs containing three distinct anions (i.e., acetate [OAc], taurate [Tau], and geranate [Ger]). Molecular dynamics (MD) simulations and density functional theory (DFT) calculations explore insulin's stability and structure in the presence of ILs. MD analyses reveal that the insulin dimer is stabilized by non‐covalent interactions, with hydrogen bonds and anions in ILs playing key roles. Among them, [Cho][OAc] ILs show significantly better stabilization than other anions.This is due to the hydration patterns of acetate anion, which can be compared to Hofmeister series and chemical agent effects (i.e., kosmotrope and chaotrope). Further, non‐covalent interactions index and electron density analyses from the atoms‐in‐molecules theory approach are carried out to quantify the strength of non‐covalent interaction in ILs with water clusters (Wn, n = 0–6). Analyses show the significance of water molecules in the stabilization of insulin dimer in the presence of [Cho]‐based ILs. The study elucidates the role of ILs formulation concerning insulin dimers to improve the transdermal and oral drug delivery systems.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"29 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400943","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Choline [Cho]‐based ionic liquids (ILs) are biodegradable and soluble and have shown strong application in the protein stabilization and drug delivery. In this work, the stability of the insulin dimer is investigated in the presence of [Cho]‐based ILs containing three distinct anions (i.e., acetate [OAc], taurate [Tau], and geranate [Ger]). Molecular dynamics (MD) simulations and density functional theory (DFT) calculations explore insulin's stability and structure in the presence of ILs. MD analyses reveal that the insulin dimer is stabilized by non‐covalent interactions, with hydrogen bonds and anions in ILs playing key roles. Among them, [Cho][OAc] ILs show significantly better stabilization than other anions.This is due to the hydration patterns of acetate anion, which can be compared to Hofmeister series and chemical agent effects (i.e., kosmotrope and chaotrope). Further, non‐covalent interactions index and electron density analyses from the atoms‐in‐molecules theory approach are carried out to quantify the strength of non‐covalent interaction in ILs with water clusters (Wn, n = 0–6). Analyses show the significance of water molecules in the stabilization of insulin dimer in the presence of [Cho]‐based ILs. The study elucidates the role of ILs formulation concerning insulin dimers to improve the transdermal and oral drug delivery systems.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics