Hydration Pattern of Ionic Liquids in the Stabilization of Insulin Dimer: A Computational Perspective

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Gopal Hema, Nallasivam Giri Lakshman, Kandhan Palanisamy, Muthuramalingam Prakash
{"title":"Hydration Pattern of Ionic Liquids in the Stabilization of Insulin Dimer: A Computational Perspective","authors":"Gopal Hema, Nallasivam Giri Lakshman, Kandhan Palanisamy, Muthuramalingam Prakash","doi":"10.1002/adts.202400943","DOIUrl":null,"url":null,"abstract":"Choline [Cho]‐based ionic liquids (ILs) are biodegradable and soluble and have shown strong application in the protein stabilization and drug delivery. In this work, the stability of the insulin dimer is investigated in the presence of [Cho]‐based ILs containing three distinct anions (i.e., acetate [OAc], taurate [Tau], and geranate [Ger]). Molecular dynamics (MD) simulations and density functional theory (DFT) calculations explore insulin's stability and structure in the presence of ILs. MD analyses reveal that the insulin dimer is stabilized by non‐covalent interactions, with hydrogen bonds and anions in ILs playing key roles. Among them, [Cho][OAc] ILs show significantly better stabilization than other anions.This is due to the hydration patterns of acetate anion, which can be compared to Hofmeister series and chemical agent effects (i.e., kosmotrope and chaotrope). Further, non‐covalent interactions index and electron density analyses from the atoms‐in‐molecules theory approach are carried out to quantify the strength of non‐covalent interaction in ILs with water clusters (Wn, n = 0–6). Analyses show the significance of water molecules in the stabilization of insulin dimer in the presence of [Cho]‐based ILs. The study elucidates the role of ILs formulation concerning insulin dimers to improve the transdermal and oral drug delivery systems.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"29 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202400943","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Choline [Cho]‐based ionic liquids (ILs) are biodegradable and soluble and have shown strong application in the protein stabilization and drug delivery. In this work, the stability of the insulin dimer is investigated in the presence of [Cho]‐based ILs containing three distinct anions (i.e., acetate [OAc], taurate [Tau], and geranate [Ger]). Molecular dynamics (MD) simulations and density functional theory (DFT) calculations explore insulin's stability and structure in the presence of ILs. MD analyses reveal that the insulin dimer is stabilized by non‐covalent interactions, with hydrogen bonds and anions in ILs playing key roles. Among them, [Cho][OAc] ILs show significantly better stabilization than other anions.This is due to the hydration patterns of acetate anion, which can be compared to Hofmeister series and chemical agent effects (i.e., kosmotrope and chaotrope). Further, non‐covalent interactions index and electron density analyses from the atoms‐in‐molecules theory approach are carried out to quantify the strength of non‐covalent interaction in ILs with water clusters (Wn, n = 0–6). Analyses show the significance of water molecules in the stabilization of insulin dimer in the presence of [Cho]‐based ILs. The study elucidates the role of ILs formulation concerning insulin dimers to improve the transdermal and oral drug delivery systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信