Amir Haji-Mohammadi;Majid Sanaye-Pasand;Seyed-Alireza Ahmadi
{"title":"Novel Method for Decaying DC Component Removal Based on Solving the Differential Equations","authors":"Amir Haji-Mohammadi;Majid Sanaye-Pasand;Seyed-Alireza Ahmadi","doi":"10.1109/TPWRD.2024.3516950","DOIUrl":null,"url":null,"abstract":"The fault current signal measured by digital relays contains the decaying direct-current (DDC) component and some higher-order harmonics in addition to the fundamental component. One important challenge of phasor estimation algorithms is the removal of the DDC component, as the presence of this component causes errors in the estimation of the fundamental component magnitude, which can result in malfunction of distance relays. To solve this problem, this paper proposes a new method based on solving the differential equations. Using this method, the fault current signal can be decomposed into minor components and its fundamental component can be properly extracted. After extracting the fundamental component, the discrete Fourier transform algorithm is used to estimate the current phasor. The proposed algorithm is firstly evaluated for different mathematical signals. Then, in the dynamic simulations performed using PSCAD/EMTDC software, the algorithm is employed as a phasor estimation function for a protection distance relay. Real fault data evaluations are also provided. In all cases, the algorithm is compared with some recent phasor estimation methods. The results of comparisons and evaluations confirm the speed and accuracy of the suggested algorithm in removing the DDC component and accurately estimating the fundamental component magnitude.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 2","pages":"693-704"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10804658/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The fault current signal measured by digital relays contains the decaying direct-current (DDC) component and some higher-order harmonics in addition to the fundamental component. One important challenge of phasor estimation algorithms is the removal of the DDC component, as the presence of this component causes errors in the estimation of the fundamental component magnitude, which can result in malfunction of distance relays. To solve this problem, this paper proposes a new method based on solving the differential equations. Using this method, the fault current signal can be decomposed into minor components and its fundamental component can be properly extracted. After extracting the fundamental component, the discrete Fourier transform algorithm is used to estimate the current phasor. The proposed algorithm is firstly evaluated for different mathematical signals. Then, in the dynamic simulations performed using PSCAD/EMTDC software, the algorithm is employed as a phasor estimation function for a protection distance relay. Real fault data evaluations are also provided. In all cases, the algorithm is compared with some recent phasor estimation methods. The results of comparisons and evaluations confirm the speed and accuracy of the suggested algorithm in removing the DDC component and accurately estimating the fundamental component magnitude.
期刊介绍:
The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.