Probabilistic analyses of geosynthetic-reinforced pile-supported embankments using design methods and 3D finite element models considering soil variability
{"title":"Probabilistic analyses of geosynthetic-reinforced pile-supported embankments using design methods and 3D finite element models considering soil variability","authors":"Ekansh Agarwal, Ning Luo, Kaiwen Liu","doi":"10.1016/j.geotexmem.2024.12.002","DOIUrl":null,"url":null,"abstract":"Geosynthetic-Reinforced Pile-Supported Embankments (GRPSE) are effective composite structures to support highway infrastructures on weak soils. Numerous design methods have been developed in practice to facilitate the use of this technology. However, it is well known that as the design methods adopt different theoretical assumptions, the performance indexes given by the design methods vary significantly. Furthermore, the effect of soil variability on the design outcomes given by the design methods is unknown. These uncertainties present great challenges to design engineers to select the proper design method and consider soil variability. To fill this knowledge gap, we conducted comprehensive probabilistic analyses using typical design methods (BS8006 and CUR226) and 3D finite element models (unit-cell and full-scale) considering soil variability. A well-established case study in the literature was used as a benchmark. Algorithms for the design methods and the 3D finite element models were developed, calibrated and tested in both deterministic and probabilistic scenarios. A detailed probabilistic comparison between the design methods and the 3D finite element models was also carried out. Results show that 1) soil variability affects the performance indexes of GRPSE, including stress reduction ratio, stress concentration ratio, differential settlement, and tensile force of geosynthetics; 2) model uncertainties of design methods can be as high as 46%, due to the assumptions and simplifications made to formulate the solutions; 3) the probabilistic 3D full-scale finite element method is the most robust approach to consider soil variability.","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"10 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.geotexmem.2024.12.002","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Geosynthetic-Reinforced Pile-Supported Embankments (GRPSE) are effective composite structures to support highway infrastructures on weak soils. Numerous design methods have been developed in practice to facilitate the use of this technology. However, it is well known that as the design methods adopt different theoretical assumptions, the performance indexes given by the design methods vary significantly. Furthermore, the effect of soil variability on the design outcomes given by the design methods is unknown. These uncertainties present great challenges to design engineers to select the proper design method and consider soil variability. To fill this knowledge gap, we conducted comprehensive probabilistic analyses using typical design methods (BS8006 and CUR226) and 3D finite element models (unit-cell and full-scale) considering soil variability. A well-established case study in the literature was used as a benchmark. Algorithms for the design methods and the 3D finite element models were developed, calibrated and tested in both deterministic and probabilistic scenarios. A detailed probabilistic comparison between the design methods and the 3D finite element models was also carried out. Results show that 1) soil variability affects the performance indexes of GRPSE, including stress reduction ratio, stress concentration ratio, differential settlement, and tensile force of geosynthetics; 2) model uncertainties of design methods can be as high as 46%, due to the assumptions and simplifications made to formulate the solutions; 3) the probabilistic 3D full-scale finite element method is the most robust approach to consider soil variability.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.