Machine Learning-Based Prediction Model for ICU Mortality After Continuous Renal Replacement Therapy Initiation in Children.

Q4 Medicine
Critical care explorations Pub Date : 2024-12-17 eCollection Date: 2024-12-01 DOI:10.1097/CCE.0000000000001188
Sameer Thadani, Tzu-Chun Wu, Danny T Y Wu, Aadil Kakajiwala, Danielle E Soranno, Gerard Cortina, Rachana Srivastava, Katja M Gist, Shina Menon
{"title":"Machine Learning-Based Prediction Model for ICU Mortality After Continuous Renal Replacement Therapy Initiation in Children.","authors":"Sameer Thadani, Tzu-Chun Wu, Danny T Y Wu, Aadil Kakajiwala, Danielle E Soranno, Gerard Cortina, Rachana Srivastava, Katja M Gist, Shina Menon","doi":"10.1097/CCE.0000000000001188","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Continuous renal replacement therapy (CRRT) is the favored renal replacement therapy in critically ill patients. Predicting clinical outcomes for CRRT patients is difficult due to population heterogeneity, varying clinical practices, and limited sample sizes.</p><p><strong>Objective: </strong>We aimed to predict survival to ICUs and hospital discharge in children and young adults receiving CRRT using machine learning (ML) techniques.</p><p><strong>Derivation cohort: </strong>Patients less than 25 years of age receiving CRRT for acute kidney injury and/or volume overload from 2015 to 2021 (80%).</p><p><strong>Validation cohort: </strong>Internal validation occurred in a testing group of patients from the dataset (20%).</p><p><strong>Prediction model: </strong>Retrospective international multicenter study utilizing an 80/20 training and testing cohort split, and logistic regression with L2 regularization (LR), decision tree, random forest (RF), gradient boosting machine, and support vector machine with linear kernel to predict ICU and hospital survival. Model performance was determined by the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) due to the imbalance in the dataset.</p><p><strong>Results: </strong>Of the 933 patients included in this study, 538 (54%) were male with a median age of 8.97 years and interquartile range (1.81-15.0 yr). The ICU mortality was 35% and hospital mortality was 37%. The RF had the best performance for predicting ICU mortality (AUROC, 0.791 and AUPRC, 0.878) and LR for hospital mortality (AUROC, 0.777 and AUPRC, 0.859). The top two predictors of ICU survival were Pediatric Logistic Organ Dysfunction-2 score at CRRT initiation and admission diagnosis of respiratory failure.</p><p><strong>Conclusions: </strong>These are the first ML models to predict survival at ICU and hospital discharge in children and young adults receiving CRRT. RF outperformed other models for predicting ICU mortality. Future studies should expand the input variables, conduct a more sophisticated feature selection, and use deep learning algorithms to generate more precise models.</p>","PeriodicalId":93957,"journal":{"name":"Critical care explorations","volume":"6 12","pages":"e1188"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654792/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical care explorations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/CCE.0000000000001188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Continuous renal replacement therapy (CRRT) is the favored renal replacement therapy in critically ill patients. Predicting clinical outcomes for CRRT patients is difficult due to population heterogeneity, varying clinical practices, and limited sample sizes.

Objective: We aimed to predict survival to ICUs and hospital discharge in children and young adults receiving CRRT using machine learning (ML) techniques.

Derivation cohort: Patients less than 25 years of age receiving CRRT for acute kidney injury and/or volume overload from 2015 to 2021 (80%).

Validation cohort: Internal validation occurred in a testing group of patients from the dataset (20%).

Prediction model: Retrospective international multicenter study utilizing an 80/20 training and testing cohort split, and logistic regression with L2 regularization (LR), decision tree, random forest (RF), gradient boosting machine, and support vector machine with linear kernel to predict ICU and hospital survival. Model performance was determined by the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) due to the imbalance in the dataset.

Results: Of the 933 patients included in this study, 538 (54%) were male with a median age of 8.97 years and interquartile range (1.81-15.0 yr). The ICU mortality was 35% and hospital mortality was 37%. The RF had the best performance for predicting ICU mortality (AUROC, 0.791 and AUPRC, 0.878) and LR for hospital mortality (AUROC, 0.777 and AUPRC, 0.859). The top two predictors of ICU survival were Pediatric Logistic Organ Dysfunction-2 score at CRRT initiation and admission diagnosis of respiratory failure.

Conclusions: These are the first ML models to predict survival at ICU and hospital discharge in children and young adults receiving CRRT. RF outperformed other models for predicting ICU mortality. Future studies should expand the input variables, conduct a more sophisticated feature selection, and use deep learning algorithms to generate more precise models.

基于机器学习的儿童持续肾替代治疗开始后ICU死亡率预测模型。
背景:持续肾替代治疗(CRRT)是危重患者首选的肾替代治疗方法。由于人群异质性、临床实践差异和样本量有限,预测CRRT患者的临床结果是困难的。目的:我们旨在利用机器学习(ML)技术预测接受CRRT的儿童和年轻人的icu生存和出院情况。衍生队列:2015年至2021年接受CRRT治疗急性肾损伤和/或容量超载的25岁以下患者(80%)。验证队列:在数据集中的一组患者中进行内部验证(20%)。预测模型:回顾性国际多中心研究,采用80/20训练和测试队列分割,并结合L2正则化(LR)、决策树、随机森林(RF)、梯度增强机和线性核支持向量机的逻辑回归预测ICU和医院生存。模型性能由接收者工作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC)决定,这是由于数据集的不平衡造成的。结果:本研究纳入的933例患者中,538例(54%)为男性,中位年龄8.97岁,四分位数范围为1.81-15.0岁。ICU死亡率为35%,住院死亡率为37%。RF预测ICU死亡率(AUROC, 0.791, AUPRC, 0.878)和LR预测住院死亡率(AUROC, 0.777, AUPRC, 0.859)的效果最好。预测ICU生存的前两项指标为CRRT开始时儿科Logistic脏器功能障碍-2评分和入院时呼吸衰竭诊断。结论:这些是第一个预测接受CRRT的儿童和年轻人在ICU和出院时生存的ML模型。RF在预测ICU死亡率方面优于其他模型。未来的研究应该扩展输入变量,进行更复杂的特征选择,并使用深度学习算法来生成更精确的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信