Kumar Naveen, Sandeep Bose, Chanbasha Basheer, Richard N Zare, Elumalai Gnanamani
{"title":"Handheld portable device for delivering capped silver nanoparticles for antimicrobial applications.","authors":"Kumar Naveen, Sandeep Bose, Chanbasha Basheer, Richard N Zare, Elumalai Gnanamani","doi":"10.1017/qrd.2024.9","DOIUrl":null,"url":null,"abstract":"<p><p>We describe a simple, cost-effective, green method for producing capped silver nanoparticles (Ag NPs) using a handheld portable mesh nebulizer. The precursor solution containing a 1:1 mixture of silver nitrate (AgNO<sub>3</sub>) and ligand (glycerol or sodium alginate) was sprayed using the nebulizer. The Ag NPs were generated in the water microdroplets within a few milliseconds under ambient conditions without any external reducing agent or action of a radiation source. The synthesized nanoparticles were characterized by using high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction analysis (XRD), which validated the formation of Ag NPs. The synthesized glycerate-capped silver nanoparticles (Ag-gly NPs) were used as a catalyst to show the oxidative coupling of aniline to form azobenzene products with a yield of up to 61%. Experiments conducted using Ag NPs produced in the droplets demonstrated more than 99% antibacterial activity when contacting <i>Escherichia Coli.</i> Our in-situ synthesis-cum-fabrication technique using a portable sprayer represents a viable alternative to the existing fiber or hydrogel-based antimicrobial wound healing.</p>","PeriodicalId":34636,"journal":{"name":"QRB Discovery","volume":"5 ","pages":"e9"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"QRB Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/qrd.2024.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
We describe a simple, cost-effective, green method for producing capped silver nanoparticles (Ag NPs) using a handheld portable mesh nebulizer. The precursor solution containing a 1:1 mixture of silver nitrate (AgNO3) and ligand (glycerol or sodium alginate) was sprayed using the nebulizer. The Ag NPs were generated in the water microdroplets within a few milliseconds under ambient conditions without any external reducing agent or action of a radiation source. The synthesized nanoparticles were characterized by using high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction analysis (XRD), which validated the formation of Ag NPs. The synthesized glycerate-capped silver nanoparticles (Ag-gly NPs) were used as a catalyst to show the oxidative coupling of aniline to form azobenzene products with a yield of up to 61%. Experiments conducted using Ag NPs produced in the droplets demonstrated more than 99% antibacterial activity when contacting Escherichia Coli. Our in-situ synthesis-cum-fabrication technique using a portable sprayer represents a viable alternative to the existing fiber or hydrogel-based antimicrobial wound healing.