Predicting molecular subtypes of breast cancer based on multi-parametric MRI dataset using deep learning method.

IF 2.1 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Wanqing Ren, Xiaoming Xi, Xiaodong Zhang, Kesong Wang, Menghan Liu, Dawei Wang, Yanan Du, Jingxiang Sun, Guang Zhang
{"title":"Predicting molecular subtypes of breast cancer based on multi-parametric MRI dataset using deep learning method.","authors":"Wanqing Ren, Xiaoming Xi, Xiaodong Zhang, Kesong Wang, Menghan Liu, Dawei Wang, Yanan Du, Jingxiang Sun, Guang Zhang","doi":"10.1016/j.mri.2024.110305","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a multi-parametric MRI model for the prediction of molecular subtypes of breast cancer using five types of breast cancer preoperative MRI images.</p><p><strong>Methods: </strong>In this study, we retrospectively analyzed clinical data and five types of MRI images (FS-T1WI, T2WI, Contrast-enhanced T1-weighted imaging (T1-C), DWI, and ADC) from 325 patients with pathologically confirmed breast cancer. Using the five types of MRI images as inputs to the ResNeXt50 model respectively, five base models were constructed, and then the outputs of the five base models were fused using an ensemble learning approach to develop a multi-parametric MRI model. Breast cancer was classified into four molecular subtypes based on immunohistochemical results: luminal A, luminal B, human epidermal growth factor receptor 2-positive (HER2-positive), and triple-negative (TN). The whole dataset was randomly divided into a training set (n = 260; 76 luminal A, 80 luminal B, 50 HER2-positive, 54 TN) and a testing set (n = 65; 20 luminal A, 20 luminal B, 12 HER2-positive, 13 TN). Accuracy, sensitivity, specificity, receiver operating characteristic curve (ROC) and area under the curve (AUC) were calculated to assess the predictive performance of the models.</p><p><strong>Results: </strong>In the testing set, for the assessment of the four molecular subtypes of breast cancer, the multi-parametric MRI model yielded an AUC of 0.859-0.912; the AUCs based on the FS-T1WI, T2WI, T1-C, DWI, and ADC models achieved respectively 0.632-0. 814, 0.641-0.788, 0.621-0.709, 0.620-0.701and 0.611-0.785.</p><p><strong>Conclusion: </strong>The multi-parametric MRI model we developed outperformed the base models in predicting breast cancer molecular subtypes. Our study also showed the potential of FS-T1WI base model in predicting breast cancer molecular subtypes.</p>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":" ","pages":"110305"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mri.2024.110305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop a multi-parametric MRI model for the prediction of molecular subtypes of breast cancer using five types of breast cancer preoperative MRI images.

Methods: In this study, we retrospectively analyzed clinical data and five types of MRI images (FS-T1WI, T2WI, Contrast-enhanced T1-weighted imaging (T1-C), DWI, and ADC) from 325 patients with pathologically confirmed breast cancer. Using the five types of MRI images as inputs to the ResNeXt50 model respectively, five base models were constructed, and then the outputs of the five base models were fused using an ensemble learning approach to develop a multi-parametric MRI model. Breast cancer was classified into four molecular subtypes based on immunohistochemical results: luminal A, luminal B, human epidermal growth factor receptor 2-positive (HER2-positive), and triple-negative (TN). The whole dataset was randomly divided into a training set (n = 260; 76 luminal A, 80 luminal B, 50 HER2-positive, 54 TN) and a testing set (n = 65; 20 luminal A, 20 luminal B, 12 HER2-positive, 13 TN). Accuracy, sensitivity, specificity, receiver operating characteristic curve (ROC) and area under the curve (AUC) were calculated to assess the predictive performance of the models.

Results: In the testing set, for the assessment of the four molecular subtypes of breast cancer, the multi-parametric MRI model yielded an AUC of 0.859-0.912; the AUCs based on the FS-T1WI, T2WI, T1-C, DWI, and ADC models achieved respectively 0.632-0. 814, 0.641-0.788, 0.621-0.709, 0.620-0.701and 0.611-0.785.

Conclusion: The multi-parametric MRI model we developed outperformed the base models in predicting breast cancer molecular subtypes. Our study also showed the potential of FS-T1WI base model in predicting breast cancer molecular subtypes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Magnetic resonance imaging
Magnetic resonance imaging 医学-核医学
CiteScore
4.70
自引率
4.00%
发文量
194
审稿时长
83 days
期刊介绍: Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信