{"title":"Electrophysiological recording during touchscreen-based behavioral assays in rodents: A platform for improving early-stage neuroscience drug discovery","authors":"Gregory V. Carr","doi":"10.1111/jnc.16289","DOIUrl":null,"url":null,"abstract":"<p>Preclinical behavioral testing is essential for drug discovery in neuropsychiatric disorders, yet translational challenges persist because of interspecies differences. Touchscreen-based behavioral tasks offer a promising solution for bridging this gap. These tasks provide flexibility across cognitive domains and species, facilitating rigorous comparisons. They complement traditional assays, offering improved face, predictive, and construct validity by mirroring human neuropsychological tests. Notably, nearly identical tasks have been validated in multiple species, enhancing translational potential. Recent studies demonstrate conserved neurocircuitry engagement in touchscreen tasks, supporting their relevance to human function and therapeutic development. The integration of electrophysiological measures, such as electroencephalography (EEG) and local field potential (LFP) recordings with touchscreen behavioral assays, enhances translational biomarker discovery and serves to elucidate neural circuit dynamics. Despite current limitations and the need for further validation, this approach offers a pathway to more efficient drug discovery. This review covers recent research describing the feasibility and benefits of EEG/LFP-touchscreen combination studies in rodents. While the field is still in its early stages, the promise of this research strategy is evident. Future efforts will likely focus on refining methodologies, identifying robust translational biomarkers, and expanding studies across species. Touchscreen-based platforms, integrated with electrophysiological measurements, hold significant potential to advance our understanding of neuropsychiatric disorders and accelerate the development of effective treatments.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.16289","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.16289","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Preclinical behavioral testing is essential for drug discovery in neuropsychiatric disorders, yet translational challenges persist because of interspecies differences. Touchscreen-based behavioral tasks offer a promising solution for bridging this gap. These tasks provide flexibility across cognitive domains and species, facilitating rigorous comparisons. They complement traditional assays, offering improved face, predictive, and construct validity by mirroring human neuropsychological tests. Notably, nearly identical tasks have been validated in multiple species, enhancing translational potential. Recent studies demonstrate conserved neurocircuitry engagement in touchscreen tasks, supporting their relevance to human function and therapeutic development. The integration of electrophysiological measures, such as electroencephalography (EEG) and local field potential (LFP) recordings with touchscreen behavioral assays, enhances translational biomarker discovery and serves to elucidate neural circuit dynamics. Despite current limitations and the need for further validation, this approach offers a pathway to more efficient drug discovery. This review covers recent research describing the feasibility and benefits of EEG/LFP-touchscreen combination studies in rodents. While the field is still in its early stages, the promise of this research strategy is evident. Future efforts will likely focus on refining methodologies, identifying robust translational biomarkers, and expanding studies across species. Touchscreen-based platforms, integrated with electrophysiological measurements, hold significant potential to advance our understanding of neuropsychiatric disorders and accelerate the development of effective treatments.
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.