An easy to implement empirical approach for estimating underwater sound transmission loss during pile driving in Florida.

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Raphael Crowley, Moses Bosco, Amanda Schaaf, Mariam Makoleo, Consolatha Mushi, Brandon Rivera, Jonathan Berube, Clark Morgan, Emily Sapp, Christian H Matemu, Dillon Sypula, James J Gelsleichter, Brian T Kopp
{"title":"An easy to implement empirical approach for estimating underwater sound transmission loss during pile driving in Florida.","authors":"Raphael Crowley, Moses Bosco, Amanda Schaaf, Mariam Makoleo, Consolatha Mushi, Brandon Rivera, Jonathan Berube, Clark Morgan, Emily Sapp, Christian H Matemu, Dillon Sypula, James J Gelsleichter, Brian T Kopp","doi":"10.1121/10.0034619","DOIUrl":null,"url":null,"abstract":"<p><p>Underwater noise data were collected from 84 pile drives during bridge construction at various sites in Florida. These data were used to develop an empirically based model for underwater transmission loss associated with root mean squared, peak, and sound exposure level values. The model was verified using readings from other datasets as well as data from this study, and it appeared to reproduce reported transmission loss coefficient values well when data were curated to match data used in the empirical model's development and limited to situations where robust data were used in model development. As such, the model described here has some limitations, but in the context of pile driving in Florida where most piles are of similar dimensions and driven in similar water depths, especially during impact pile driving concrete piles, it may represent a useful design tool that engineers can use to predict underwater noise due to pile driving without the need to sample sound at multiple locations during driving.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"156 6","pages":"4048-4060"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0034619","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater noise data were collected from 84 pile drives during bridge construction at various sites in Florida. These data were used to develop an empirically based model for underwater transmission loss associated with root mean squared, peak, and sound exposure level values. The model was verified using readings from other datasets as well as data from this study, and it appeared to reproduce reported transmission loss coefficient values well when data were curated to match data used in the empirical model's development and limited to situations where robust data were used in model development. As such, the model described here has some limitations, but in the context of pile driving in Florida where most piles are of similar dimensions and driven in similar water depths, especially during impact pile driving concrete piles, it may represent a useful design tool that engineers can use to predict underwater noise due to pile driving without the need to sample sound at multiple locations during driving.

佛罗里达州打桩过程中估算水下声音传播损失的一种易于实施的经验方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信