Evolution of Lipid Metabolism in the Injured Mouse Spinal Cord.

IF 3.9 2区 医学 Q1 CLINICAL NEUROLOGY
Natalie E Scholpa, Epiphani C Simmons, Justin M Snider, Kelsey Barrett, Lauren G Buss, Rick G Schnellmann
{"title":"Evolution of Lipid Metabolism in the Injured Mouse Spinal Cord.","authors":"Natalie E Scholpa, Epiphani C Simmons, Justin M Snider, Kelsey Barrett, Lauren G Buss, Rick G Schnellmann","doi":"10.1089/neu.2024.0385","DOIUrl":null,"url":null,"abstract":"<p><p>Following spinal cord injury (SCI), there is a short-lived recovery phase that ultimately plateaus. Understanding changes within the spinal cord over time may facilitate targeted approaches to prevent and/or reverse this plateau and allow for continued recovery. Untargeted metabolomics revealed distinct metabolic profiles within the injured cord during recovery (7 days postinjury [DPI]) and plateau (21 DPI) periods in a mouse model of severe contusion SCI. Alterations in lipid metabolites, particularly those involved in phospholipid (PL) metabolism, largely contributed to overall differences. PLs are hydrolyzed by phospholipases A2 (PLA2s), yielding lysophospholipids (LPLs) and fatty acids (FAs). PL metabolites decreased between 7 and 21 DPI, whereas LPLs increased at 21 DPI, suggesting amplified PL metabolism during the plateau phase. Expression of various PLA2s also differed between the two time points, further supporting dysregulation of PL metabolism during the two phases of injury. FAs, which can promote inflammation, mitochondrial dysfunction, and neuronal damage, were increased regardless of time point. Carnitine can bind with FAs to form acylcarnitines, lessening FA-induced toxicity. In contrast to FAs, carnitine and acylcarnitines were increased at 7 DPI, but decreased at 21 DPI, suggesting a loss of carnitine-mediated mitigation of FA toxicity at the later time point, which may contribute to the cessation of recovery post-SCI. Alterations in oxidative phosphorylation and tricarboxylic acid cycle metabolites were also observed, indicating persistent although dissimilar disruptions in mitochondrial function. These data aid in increasing our understanding of lipid metabolism following SCI and have the potential to lead to new biomarkers and/or therapeutic strategies.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2024.0385","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Following spinal cord injury (SCI), there is a short-lived recovery phase that ultimately plateaus. Understanding changes within the spinal cord over time may facilitate targeted approaches to prevent and/or reverse this plateau and allow for continued recovery. Untargeted metabolomics revealed distinct metabolic profiles within the injured cord during recovery (7 days postinjury [DPI]) and plateau (21 DPI) periods in a mouse model of severe contusion SCI. Alterations in lipid metabolites, particularly those involved in phospholipid (PL) metabolism, largely contributed to overall differences. PLs are hydrolyzed by phospholipases A2 (PLA2s), yielding lysophospholipids (LPLs) and fatty acids (FAs). PL metabolites decreased between 7 and 21 DPI, whereas LPLs increased at 21 DPI, suggesting amplified PL metabolism during the plateau phase. Expression of various PLA2s also differed between the two time points, further supporting dysregulation of PL metabolism during the two phases of injury. FAs, which can promote inflammation, mitochondrial dysfunction, and neuronal damage, were increased regardless of time point. Carnitine can bind with FAs to form acylcarnitines, lessening FA-induced toxicity. In contrast to FAs, carnitine and acylcarnitines were increased at 7 DPI, but decreased at 21 DPI, suggesting a loss of carnitine-mediated mitigation of FA toxicity at the later time point, which may contribute to the cessation of recovery post-SCI. Alterations in oxidative phosphorylation and tricarboxylic acid cycle metabolites were also observed, indicating persistent although dissimilar disruptions in mitochondrial function. These data aid in increasing our understanding of lipid metabolism following SCI and have the potential to lead to new biomarkers and/or therapeutic strategies.

损伤小鼠脊髓中脂质代谢的演变
脊髓损伤(SCI)后,有一个短暂的恢复阶段,最终达到平稳期。随着时间的推移,了解脊髓内部的变化可能有助于采取有针对性的方法来预防和/或逆转这种平台期,并允许持续恢复。在严重挫伤性脊髓损伤小鼠模型中,非靶向代谢组学揭示了损伤脊髓在恢复期(损伤后7天[DPI])和平台期(21 DPI)内不同的代谢谱。脂质代谢物的改变,特别是那些涉及磷脂(PL)代谢的改变,在很大程度上促成了总体差异。PLs被磷脂酶A2 (PLA2s)水解,生成溶血磷脂(LPLs)和脂肪酸(FAs)。在7 - 21 DPI期间,PL代谢物减少,而LPLs在21 DPI时增加,表明平台期PL代谢增加。各种PLA2s的表达在两个时间点之间也存在差异,进一步支持了两个损伤阶段PL代谢的失调。可促进炎症、线粒体功能障碍和神经元损伤的FAs在任何时间点均增加。肉毒碱可以与脂肪酸结合形成酰基肉毒碱,减轻脂肪酸引起的毒性。与FAs相比,肉毒碱和酰基肉毒碱在7 DPI时增加,但在21 DPI时减少,表明肉毒碱介导的FA毒性缓解在较晚的时间点丧失,这可能导致脊髓损伤后恢复停止。氧化磷酸化和三羧酸循环代谢物的改变也被观察到,表明线粒体功能的持续破坏,尽管不同。这些数据有助于增加我们对脊髓损伤后脂质代谢的理解,并有可能导致新的生物标志物和/或治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of neurotrauma
Journal of neurotrauma 医学-临床神经学
CiteScore
9.20
自引率
7.10%
发文量
233
审稿时长
3 months
期刊介绍: Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信