Machine learning and multi-omics characterization of SLC2A1 as a prognostic factor in hepatocellular carcinoma: SLC2A1 is a prognostic factor in HCC.

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY
Gene Pub Date : 2024-12-15 DOI:10.1016/j.gene.2024.149178
Kangjie Xu, Houliang Zhang, Hua Dai, Weipu Mao
{"title":"Machine learning and multi-omics characterization of SLC2A1 as a prognostic factor in hepatocellular carcinoma: SLC2A1 is a prognostic factor in HCC.","authors":"Kangjie Xu, Houliang Zhang, Hua Dai, Weipu Mao","doi":"10.1016/j.gene.2024.149178","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is characterized by high incidence, significant mortality, and marked heterogeneity, making accurate molecular subtyping essential for effective treatment. Using multi-omics data from HCC patients, we applied diverse clustering algorithms to identify three HCC subtypes (HSs) with distinct prognostic characteristics. Among these, HS1 emerged as an immune-compromised subtype associated with the poorest prognosis. Additionally, we developed a novel, robust, and highly accurate machine learning-guided prognostic signature (MLPS) by integrating multiple machine learning algorithms and their combinations. Our study also identified SLC2A1, the core gene of MLPS, as being highly expressed during advanced stages of tumor progression. Knockdown experiments demonstrated that reducing SLC2A1 expression significantly suppressed the malignant behavior of HCC cells. Furthermore, SLC2A1 expression was linked to responsiveness to dasatinib and vincristine, suggesting potential therapeutic relevance. MLPS and SLC2A1 offer promising tools for individualized prognosis prediction and targeted therapy in HCC, providing new opportunities to improve patient outcomes.</p>","PeriodicalId":12499,"journal":{"name":"Gene","volume":" ","pages":"149178"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2024.149178","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Hepatocellular carcinoma (HCC) is characterized by high incidence, significant mortality, and marked heterogeneity, making accurate molecular subtyping essential for effective treatment. Using multi-omics data from HCC patients, we applied diverse clustering algorithms to identify three HCC subtypes (HSs) with distinct prognostic characteristics. Among these, HS1 emerged as an immune-compromised subtype associated with the poorest prognosis. Additionally, we developed a novel, robust, and highly accurate machine learning-guided prognostic signature (MLPS) by integrating multiple machine learning algorithms and their combinations. Our study also identified SLC2A1, the core gene of MLPS, as being highly expressed during advanced stages of tumor progression. Knockdown experiments demonstrated that reducing SLC2A1 expression significantly suppressed the malignant behavior of HCC cells. Furthermore, SLC2A1 expression was linked to responsiveness to dasatinib and vincristine, suggesting potential therapeutic relevance. MLPS and SLC2A1 offer promising tools for individualized prognosis prediction and targeted therapy in HCC, providing new opportunities to improve patient outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gene
Gene 生物-遗传学
CiteScore
6.10
自引率
2.90%
发文量
718
审稿时长
42 days
期刊介绍: Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信