{"title":"Automated plasmid design for marker-free genome editing in budding yeast.","authors":"Lazar Stojković, Vojislav Gligorovski, Mahsa Geramimanesh, Marco Labagnara, Sahand Jamal Rahi","doi":"10.1093/g3journal/jkae297","DOIUrl":null,"url":null,"abstract":"<p><p>Scar-less genome editing in budding yeast with elimination of the selection marker has many advantages. Some markers such as URA3 and TRP1 can be recycled through counterselection. This permits seamless genome modification with pop-in/pop-out (PIPO), in which a DNA construct first integrates in the genome and, subsequently, homologous regions recombine and excise undesired sequences. Popular approaches for creating such constructs use oligonucleotides and polymerase chain reaction (PCR). However, the use of oligonucleotides has many practical disadvantages. With the rapid reduction in price, synthesizing custom DNA sequences in specific plasmid backbones has become an appealing alternative. For designing plasmids for seamless PIPO gene tagging or deletion, there are a number of factors to consider. To create only the shortest DNA sequences necessary, avoid errors in manual design, specify the amount of homology desired, and customize restriction sites, we created the computational tool PIPOline. Using it, we tested the ratios of homology that improve pop-out efficiency when targeting the genes HTB2 or WHI5. We supply optimal PIPO plasmid sequences for tagging or deleting almost all S288C budding yeast open reading frames (ORFs). Finally, we demonstrate how the histone variant Htb2 marked with a red fluorescent protein can be used as a cell-cycle stage marker, alternative to superfolder GFP (sfGPF), reducing light toxicity. We expect PIPOline to streamline genome editing in budding yeast.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae297","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Scar-less genome editing in budding yeast with elimination of the selection marker has many advantages. Some markers such as URA3 and TRP1 can be recycled through counterselection. This permits seamless genome modification with pop-in/pop-out (PIPO), in which a DNA construct first integrates in the genome and, subsequently, homologous regions recombine and excise undesired sequences. Popular approaches for creating such constructs use oligonucleotides and polymerase chain reaction (PCR). However, the use of oligonucleotides has many practical disadvantages. With the rapid reduction in price, synthesizing custom DNA sequences in specific plasmid backbones has become an appealing alternative. For designing plasmids for seamless PIPO gene tagging or deletion, there are a number of factors to consider. To create only the shortest DNA sequences necessary, avoid errors in manual design, specify the amount of homology desired, and customize restriction sites, we created the computational tool PIPOline. Using it, we tested the ratios of homology that improve pop-out efficiency when targeting the genes HTB2 or WHI5. We supply optimal PIPO plasmid sequences for tagging or deleting almost all S288C budding yeast open reading frames (ORFs). Finally, we demonstrate how the histone variant Htb2 marked with a red fluorescent protein can be used as a cell-cycle stage marker, alternative to superfolder GFP (sfGPF), reducing light toxicity. We expect PIPOline to streamline genome editing in budding yeast.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.