Spatial datasets for benchmarking machine learning-based landslide susceptibility models.

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Data in Brief Pub Date : 2024-11-25 eCollection Date: 2024-12-01 DOI:10.1016/j.dib.2024.111155
Guruh Samodra, Mukhamad Ngainul Malawani, Indranova Suhendro, Djati Mardiatno
{"title":"Spatial datasets for benchmarking machine learning-based landslide susceptibility models.","authors":"Guruh Samodra, Mukhamad Ngainul Malawani, Indranova Suhendro, Djati Mardiatno","doi":"10.1016/j.dib.2024.111155","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a comprehensive dataset developed for benchmarking machine learning-based landslide susceptibility models. The dataset includes landslide polygons delineated through manual interpretation of high-resolution satellite imagery and controlling factors data extracted from topographic maps and Indonesia's national digital elevation model (DEMNAS). Landslide events were mapped by comparing pre- and post-event satellite imagery from Tropical Cyclone (TC) Cempaka, which occurred from 27 to 29 November 2017, and verified through field surveys. Pre-event landslides were mapped using Google Earth imagery, while post-event landslides were mapped using Pleiades Pan-sharpened Multispectral Natural Color Band imagery sourced from the European Space Agency (ESA) via Indonesia's National Institute of Aeronautics and Space (LAPAN). The landslide polygons identify areas with confirmed landslide activity, while the controlling factors dataset includes topographic attributes such as slope, aspect, elevation, profile curvature, plan curvature, terrain wetness index, stream power index, land use, distance to road, and distance to river. The dataset is publicly available and aims to promote transparency, reproducibility, and collaboration in landslide research. It offers significant reuse potential for researchers across diverse domains and regions, enabling comparative studies, model benchmarking, and validation efforts. This dataset provides a valuable resource for advancing machine learning applications in landslide susceptibility modeling and supporting a wide range of geospatial analyses.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111155"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648094/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a comprehensive dataset developed for benchmarking machine learning-based landslide susceptibility models. The dataset includes landslide polygons delineated through manual interpretation of high-resolution satellite imagery and controlling factors data extracted from topographic maps and Indonesia's national digital elevation model (DEMNAS). Landslide events were mapped by comparing pre- and post-event satellite imagery from Tropical Cyclone (TC) Cempaka, which occurred from 27 to 29 November 2017, and verified through field surveys. Pre-event landslides were mapped using Google Earth imagery, while post-event landslides were mapped using Pleiades Pan-sharpened Multispectral Natural Color Band imagery sourced from the European Space Agency (ESA) via Indonesia's National Institute of Aeronautics and Space (LAPAN). The landslide polygons identify areas with confirmed landslide activity, while the controlling factors dataset includes topographic attributes such as slope, aspect, elevation, profile curvature, plan curvature, terrain wetness index, stream power index, land use, distance to road, and distance to river. The dataset is publicly available and aims to promote transparency, reproducibility, and collaboration in landslide research. It offers significant reuse potential for researchers across diverse domains and regions, enabling comparative studies, model benchmarking, and validation efforts. This dataset provides a valuable resource for advancing machine learning applications in landslide susceptibility modeling and supporting a wide range of geospatial analyses.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信