Dataset for the identification of a ultra-low frequency multidirectional energy harvester for wind turbines.

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Data in Brief Pub Date : 2024-11-20 eCollection Date: 2024-12-01 DOI:10.1016/j.dib.2024.111126
Julen Bacaicoa, Mikel Hualde-Otamendi, Mikel Merino-Olagüe, Aitor Plaza, Xabier Iriarte, Carlos Castellano-Aldave, Alfonso Carlosena
{"title":"Dataset for the identification of a ultra-low frequency multidirectional energy harvester for wind turbines.","authors":"Julen Bacaicoa, Mikel Hualde-Otamendi, Mikel Merino-Olagüe, Aitor Plaza, Xabier Iriarte, Carlos Castellano-Aldave, Alfonso Carlosena","doi":"10.1016/j.dib.2024.111126","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a publicly available dataset designed to support the identification (characterization) and performance optimization of an ultra-low-frequency multidirectional vibration energy harvester. The dataset includes detailed measurements from experiments performed to fully characterize its dynamic behaviour. The experimental data encompasses both input (acceleration)-output (energy) relationships, as well as internal system dynamics, measured using a synchronized image processing and signal acquisition system. In addition to the raw input-output data, the dataset also provides post-processed information, such as the angular positions of the moving masses, their velocities and accelerations, derived from recorded high-speed videos at 240 <math><mrow><mi>H</mi> <mi>z</mi></mrow> </math> . The dataset also includes the measured power output generated in the coils. This dataset is intended to enable further research on vibration energy harvesters by providing experimental data for identification, model validation, and performance optimization, particularly in the context of energy harvesting in low-frequency and multidirectional environments, such as those encountered in wind turbines.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111126"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a publicly available dataset designed to support the identification (characterization) and performance optimization of an ultra-low-frequency multidirectional vibration energy harvester. The dataset includes detailed measurements from experiments performed to fully characterize its dynamic behaviour. The experimental data encompasses both input (acceleration)-output (energy) relationships, as well as internal system dynamics, measured using a synchronized image processing and signal acquisition system. In addition to the raw input-output data, the dataset also provides post-processed information, such as the angular positions of the moving masses, their velocities and accelerations, derived from recorded high-speed videos at 240 H z . The dataset also includes the measured power output generated in the coils. This dataset is intended to enable further research on vibration energy harvesters by providing experimental data for identification, model validation, and performance optimization, particularly in the context of energy harvesting in low-frequency and multidirectional environments, such as those encountered in wind turbines.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信