Julen Bacaicoa, Mikel Hualde-Otamendi, Mikel Merino-Olagüe, Aitor Plaza, Xabier Iriarte, Carlos Castellano-Aldave, Alfonso Carlosena
{"title":"Dataset for the identification of a ultra-low frequency multidirectional energy harvester for wind turbines.","authors":"Julen Bacaicoa, Mikel Hualde-Otamendi, Mikel Merino-Olagüe, Aitor Plaza, Xabier Iriarte, Carlos Castellano-Aldave, Alfonso Carlosena","doi":"10.1016/j.dib.2024.111126","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a publicly available dataset designed to support the identification (characterization) and performance optimization of an ultra-low-frequency multidirectional vibration energy harvester. The dataset includes detailed measurements from experiments performed to fully characterize its dynamic behaviour. The experimental data encompasses both input (acceleration)-output (energy) relationships, as well as internal system dynamics, measured using a synchronized image processing and signal acquisition system. In addition to the raw input-output data, the dataset also provides post-processed information, such as the angular positions of the moving masses, their velocities and accelerations, derived from recorded high-speed videos at 240 <math><mrow><mi>H</mi> <mi>z</mi></mrow> </math> . The dataset also includes the measured power output generated in the coils. This dataset is intended to enable further research on vibration energy harvesters by providing experimental data for identification, model validation, and performance optimization, particularly in the context of energy harvesting in low-frequency and multidirectional environments, such as those encountered in wind turbines.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111126"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11647144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a publicly available dataset designed to support the identification (characterization) and performance optimization of an ultra-low-frequency multidirectional vibration energy harvester. The dataset includes detailed measurements from experiments performed to fully characterize its dynamic behaviour. The experimental data encompasses both input (acceleration)-output (energy) relationships, as well as internal system dynamics, measured using a synchronized image processing and signal acquisition system. In addition to the raw input-output data, the dataset also provides post-processed information, such as the angular positions of the moving masses, their velocities and accelerations, derived from recorded high-speed videos at 240 . The dataset also includes the measured power output generated in the coils. This dataset is intended to enable further research on vibration energy harvesters by providing experimental data for identification, model validation, and performance optimization, particularly in the context of energy harvesting in low-frequency and multidirectional environments, such as those encountered in wind turbines.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.