Hypocrellin A from an ethnic medicinal fungus protects against NLRP3-driven gout in mice by suppressing inflammasome activation.

IF 6.9 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Le-Jin Yan, Shuang Qi, Chao Wu, Rui Jin, Chen Hu, Ao-Li Wang, Bei-Lei Wang, Hong-Wei Yu, Li Wang, Jing Liu, Zi-Ping Qi, Wen-Chao Wang, Qing-Song Liu
{"title":"Hypocrellin A from an ethnic medicinal fungus protects against NLRP3-driven gout in mice by suppressing inflammasome activation.","authors":"Le-Jin Yan, Shuang Qi, Chao Wu, Rui Jin, Chen Hu, Ao-Li Wang, Bei-Lei Wang, Hong-Wei Yu, Li Wang, Jing Liu, Zi-Ping Qi, Wen-Chao Wang, Qing-Song Liu","doi":"10.1038/s41401-024-01434-1","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal activation of NLRP3 inflammasome causes the progression of gout, and no small-molecule inhibitor of NLRP3 has been approved yet for clinical use. In this study we established a nigericin-induced inflammasome activation cell model for screening of a natural product library by measuring IL-1β secretion in cell supernatants. Among 432 compounds tested, we found that hypocrellin A (HA), one of the major active components of a traditional ethnic medicinal fungus Hypocrella bambusea in the Northwest Yunnan of China, exhibited the highest inhibition on IL-1β production (IC<sub>50</sub> = 0.103 μM). In PMA-primed THP-1 cells or bone marrow derived macrophages (BMDMs) treated with multiple stimuli (nigericin, ATP or MSU), HA dose-dependently suppressed the activation of NLRP3 inflammasome, reducing the subsequent release of inflammatory cytokines and LDH. Furthermore, the suppression of inflammasome activation by HA was specific to NLRP3, but not to AIM2 or NLRC4. In LPS-primed BMDMs treated with nigericin, HA inhibited ASC oligomerization and speckle formation, and blocked the NLRP3-NEK7 interaction during inflammasome assembly without influencing the priming stage. Moreover, we demonstrated that HA directly bound to the NACHT domain of NLRP3, and that Arg578 and Glu629 were the critical residues for HA binding to NLRP3. In MSU-induced peritonitis and acute gouty arthritis mouse models, administration of HA (10 mg/kg, i.p., once or twice daily) effectively suppressed the inflammatory responses mediated by NLRP3 inflammasome. We conclude that HA is a broad-spectrum and specific NLRP3 inhibitor, and a valuable lead compound to develop novel therapeutic inhibitors against NLRP3-driven diseases. This study also elucidates the anti-inflammation mechanisms and molecular targets of HA, a major active component in medicinal fungus Hypocrella bambusea that has been long used by Chinese ethnic groups.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-024-01434-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abnormal activation of NLRP3 inflammasome causes the progression of gout, and no small-molecule inhibitor of NLRP3 has been approved yet for clinical use. In this study we established a nigericin-induced inflammasome activation cell model for screening of a natural product library by measuring IL-1β secretion in cell supernatants. Among 432 compounds tested, we found that hypocrellin A (HA), one of the major active components of a traditional ethnic medicinal fungus Hypocrella bambusea in the Northwest Yunnan of China, exhibited the highest inhibition on IL-1β production (IC50 = 0.103 μM). In PMA-primed THP-1 cells or bone marrow derived macrophages (BMDMs) treated with multiple stimuli (nigericin, ATP or MSU), HA dose-dependently suppressed the activation of NLRP3 inflammasome, reducing the subsequent release of inflammatory cytokines and LDH. Furthermore, the suppression of inflammasome activation by HA was specific to NLRP3, but not to AIM2 or NLRC4. In LPS-primed BMDMs treated with nigericin, HA inhibited ASC oligomerization and speckle formation, and blocked the NLRP3-NEK7 interaction during inflammasome assembly without influencing the priming stage. Moreover, we demonstrated that HA directly bound to the NACHT domain of NLRP3, and that Arg578 and Glu629 were the critical residues for HA binding to NLRP3. In MSU-induced peritonitis and acute gouty arthritis mouse models, administration of HA (10 mg/kg, i.p., once or twice daily) effectively suppressed the inflammatory responses mediated by NLRP3 inflammasome. We conclude that HA is a broad-spectrum and specific NLRP3 inhibitor, and a valuable lead compound to develop novel therapeutic inhibitors against NLRP3-driven diseases. This study also elucidates the anti-inflammation mechanisms and molecular targets of HA, a major active component in medicinal fungus Hypocrella bambusea that has been long used by Chinese ethnic groups.

从一种民族药用真菌中提取的Hypocrellin A通过抑制炎性体的激活来预防nlrp3驱动的小鼠痛风。
NLRP3炎性体的异常激活导致痛风的进展,目前还没有NLRP3的小分子抑制剂被批准用于临床。在本研究中,我们建立了尼日利亚菌素诱导的炎性体激活细胞模型,通过测量细胞上清液中IL-1β的分泌来筛选天然产物库。在432个化合物中,我们发现滇西北传统民族药用真菌竹皮草(Hypocrella bambusea)的主要活性成分之一hypocrellin A (HA)对IL-1β产生的抑制作用最强(IC50 = 0.103 μM)。在pma诱导的THP-1细胞或骨髓源性巨噬细胞(bmdm)中,经多种刺激(奈及尼菌素、ATP或MSU)处理,HA剂量依赖性地抑制NLRP3炎症小体的激活,减少随后炎症细胞因子和LDH的释放。此外,HA对炎性小体活化的抑制仅针对NLRP3,而不针对AIM2或NLRC4。在用尼日利亚菌素处理的脂多糖引发的bmdm中,HA抑制ASC寡聚和斑点形成,并在炎症小体组装过程中阻断NLRP3-NEK7相互作用,而不影响引发阶段。此外,我们证明HA直接结合NLRP3的NACHT结构域,Arg578和Glu629是HA与NLRP3结合的关键残基。在msu诱导的腹膜炎和急性痛风性关节炎小鼠模型中,HA (10 mg/kg,每日1次或2次)有效抑制NLRP3炎症小体介导的炎症反应。我们认为,透明质酸是一种广谱特异性NLRP3抑制剂,是一种有价值的先导化合物,可用于开发针对NLRP3驱动疾病的新型治疗性抑制剂。本研究还阐明了中华民族长期使用的药用真菌竹下丘脑(Hypocrella bambusea)的主要活性成分HA的抗炎机制和分子靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信