Exploring the Structure-Function Relationships in a 5-Aminolevulinic Acid Synthase and the Use of Protein Engineering to Expand its Substrate Range.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ahram Kim, Jon D Stewart
{"title":"Exploring the Structure-Function Relationships in a 5-Aminolevulinic Acid Synthase and the Use of Protein Engineering to Expand its Substrate Range.","authors":"Ahram Kim, Jon D Stewart","doi":"10.1021/acs.biochem.4c00599","DOIUrl":null,"url":null,"abstract":"<p><p>5-Aminolevulinate synthase (ALAS) is a PLP-dependent enzyme that catalyzes the production of 5-aminolevulinate from succinyl-CoA and glycine. Its ability to catalyze the essentially irreversible <i>C</i>-<i>C</i> bond formation has significant potential in chemoenzymatic synthesis of α-amino ketones. Native ALAS, unfortunately, is extremely substrate-selective, and this seriously limits its synthetic utility. Here, we have used three different protein engineering strategies to overcome this problem for the acyl-CoA substrate. By combining previously reported mutation results and structural analysis, a series of site-saturation mutagenesis/screening efforts were focused on R21, T82, N84, and T362 of <i>Rhodopseudomonas palustris</i> ALAS. These yielded single, double, and triple mutants with significantly improved substrate ranges. The steady-state kinetic parameters of several key variants were determined. These data were analyzed in the framework of the ALAS catalytic mechanism to identify the steps that may have been impacted. The most active variant was used in a larger-scale reaction to demonstrate its synthetic potential. Taken together, our results show how ALAS might become a useful biocatalyst for α-amino ketone synthesis and have also allowed us to comment on the relative merits of each the three protein engineering strategies utilized.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00599","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

5-Aminolevulinate synthase (ALAS) is a PLP-dependent enzyme that catalyzes the production of 5-aminolevulinate from succinyl-CoA and glycine. Its ability to catalyze the essentially irreversible C-C bond formation has significant potential in chemoenzymatic synthesis of α-amino ketones. Native ALAS, unfortunately, is extremely substrate-selective, and this seriously limits its synthetic utility. Here, we have used three different protein engineering strategies to overcome this problem for the acyl-CoA substrate. By combining previously reported mutation results and structural analysis, a series of site-saturation mutagenesis/screening efforts were focused on R21, T82, N84, and T362 of Rhodopseudomonas palustris ALAS. These yielded single, double, and triple mutants with significantly improved substrate ranges. The steady-state kinetic parameters of several key variants were determined. These data were analyzed in the framework of the ALAS catalytic mechanism to identify the steps that may have been impacted. The most active variant was used in a larger-scale reaction to demonstrate its synthetic potential. Taken together, our results show how ALAS might become a useful biocatalyst for α-amino ketone synthesis and have also allowed us to comment on the relative merits of each the three protein engineering strategies utilized.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信