Fan Fu, Yongxin Liu, Mingliang Liu, Zhengguang Li, Wanying Zhong, Yaqin Li, Kaixiu Li, Jun Wang, Yongchao Huang, Yiming Li, Wei Liu, Yi Zhang, Kaisong Xiang, Hui Liu, Pingshan Wang, Die Liu
{"title":"Non-noble Metal Single-Molecule Photocatalysts for the Overall Photosynthesis of Hydrogen Peroxide","authors":"Fan Fu, Yongxin Liu, Mingliang Liu, Zhengguang Li, Wanying Zhong, Yaqin Li, Kaixiu Li, Jun Wang, Yongchao Huang, Yiming Li, Wei Liu, Yi Zhang, Kaisong Xiang, Hui Liu, Pingshan Wang, Die Liu","doi":"10.1021/jacs.4c09445","DOIUrl":null,"url":null,"abstract":"Despite the great progress in molecule photocatalytic solar energy conversion, it is particularly challenging to realize a photocatalytic overall reaction in a non-noble metal complex, which represents a new paradigm for photosynthesis. In this study, a class of novel non-noble metal complexes with head-to-tail geometry were designed and readily synthesized via the coordination of triphenylamine-modified 2,2′: 6′,2″-terpyridine ligands with Zn<sup>2+</sup>. As expected, these complexes exhibited the desired through-space charge-transfer transition, generating both long-lived excited states (on the order of microseconds) and separate redox centers under visible-light irradiation. These complexes have particularly low exciton binding energies, which make them excellent heterogeneous single molecular photocatalysts for the overall photosynthetic production of H<sub>2</sub>O<sub>2</sub>. Remarkably, a high H<sub>2</sub>O<sub>2</sub> evolution rate (8862 μmol g<sup>–1</sup> h<sup>–1</sup>) was achieved in pure H<sub>2</sub>O under an air atmosphere via precise molecular tailoring, revealing the unparalleled advantages of molecular photocatalysts in improving the catalytic rate of H<sub>2</sub>O<sub>2</sub> production. This is the first time that single-molecule photocatalysts have been used to efficiently complete the photosynthesis of H<sub>2</sub>O<sub>2</sub>. This study presents a new paradigm for photocatalytic energy conversion and provides unique insights into the design of molecular photocatalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"12 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c09445","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the great progress in molecule photocatalytic solar energy conversion, it is particularly challenging to realize a photocatalytic overall reaction in a non-noble metal complex, which represents a new paradigm for photosynthesis. In this study, a class of novel non-noble metal complexes with head-to-tail geometry were designed and readily synthesized via the coordination of triphenylamine-modified 2,2′: 6′,2″-terpyridine ligands with Zn2+. As expected, these complexes exhibited the desired through-space charge-transfer transition, generating both long-lived excited states (on the order of microseconds) and separate redox centers under visible-light irradiation. These complexes have particularly low exciton binding energies, which make them excellent heterogeneous single molecular photocatalysts for the overall photosynthetic production of H2O2. Remarkably, a high H2O2 evolution rate (8862 μmol g–1 h–1) was achieved in pure H2O under an air atmosphere via precise molecular tailoring, revealing the unparalleled advantages of molecular photocatalysts in improving the catalytic rate of H2O2 production. This is the first time that single-molecule photocatalysts have been used to efficiently complete the photosynthesis of H2O2. This study presents a new paradigm for photocatalytic energy conversion and provides unique insights into the design of molecular photocatalysts.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.