Jan Tobias Weggen, Pedro González, Kimberly Hui, Ryan Bean, Michaela Wendeler, Jürgen Hubbuch
{"title":"Kinetic Modeling of the Antibody Disulfide Bond Reduction Reaction With Integrated Prediction of the Drug Load Profile for Cysteine-Conjugated ADCs","authors":"Jan Tobias Weggen, Pedro González, Kimberly Hui, Ryan Bean, Michaela Wendeler, Jürgen Hubbuch","doi":"10.1002/bit.28899","DOIUrl":null,"url":null,"abstract":"<p>Antibody-drug conjugates (ADC) constitute a groundbreaking advancement in the field of targeted therapy. In the widely utilized cysteine conjugation, the cytotoxic payload is attached to reduced interchain disulfides which involves a reduction of the native monoclonal antibody (mAb). This reaction needs to be thoroughly understood and controlled as it influences the critical quality attributes (CQAs) of the final ADC product, such as the drug-to-antibody ratio (DAR) and the drug load distribution (DLD). However, existing methodologies lack a mechanistic description of the relationship between process parameters and CQAs. In this context, kinetic modeling provides comprehensive reaction understanding, facilitating the model-based optimization of reduction reaction parameters and potentially reduces the experimental effort needed to develop a robust process. With this study, we introduce an integrated modeling framework consisting of a reduction kinetic model for the species formed during the mAb reduction reaction in combination with a regression model to quantify the number of conjugated drugs by DAR and DLD. The species formed during reduction will be measured by analytical capillary gel electrophoresis (CGE), and the DAR and DLD will be derived from reversed-phase (RP) chromatography. First, we present the development of a reduction kinetic model to describe the impact of reducing agent excess and reaction temperature on the kinetic, by careful investigation of different reaction networks and sets of kinetic rates. Second, we introduce a cross-analytical approach based on multiple linear regression (MLR), wherein CGE data is converted into the RP-derived DAR/DLD. By coupling this with the newly developed reduction kinetic model, an integrated model encompassing the two consecutive reaction steps, reduction and conjugation, is created to predict the final DAR/DLD from initial reduction reaction conditions. The integrated model is finally utilized for an in silico screening to analyze the effect of the reduction conditions, TCEP excess, temperature and reaction time, directly on the final ADC product.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"122 3","pages":"579-593"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28899","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28899","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Antibody-drug conjugates (ADC) constitute a groundbreaking advancement in the field of targeted therapy. In the widely utilized cysteine conjugation, the cytotoxic payload is attached to reduced interchain disulfides which involves a reduction of the native monoclonal antibody (mAb). This reaction needs to be thoroughly understood and controlled as it influences the critical quality attributes (CQAs) of the final ADC product, such as the drug-to-antibody ratio (DAR) and the drug load distribution (DLD). However, existing methodologies lack a mechanistic description of the relationship between process parameters and CQAs. In this context, kinetic modeling provides comprehensive reaction understanding, facilitating the model-based optimization of reduction reaction parameters and potentially reduces the experimental effort needed to develop a robust process. With this study, we introduce an integrated modeling framework consisting of a reduction kinetic model for the species formed during the mAb reduction reaction in combination with a regression model to quantify the number of conjugated drugs by DAR and DLD. The species formed during reduction will be measured by analytical capillary gel electrophoresis (CGE), and the DAR and DLD will be derived from reversed-phase (RP) chromatography. First, we present the development of a reduction kinetic model to describe the impact of reducing agent excess and reaction temperature on the kinetic, by careful investigation of different reaction networks and sets of kinetic rates. Second, we introduce a cross-analytical approach based on multiple linear regression (MLR), wherein CGE data is converted into the RP-derived DAR/DLD. By coupling this with the newly developed reduction kinetic model, an integrated model encompassing the two consecutive reaction steps, reduction and conjugation, is created to predict the final DAR/DLD from initial reduction reaction conditions. The integrated model is finally utilized for an in silico screening to analyze the effect of the reduction conditions, TCEP excess, temperature and reaction time, directly on the final ADC product.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.