Robust Image Hashing With Weighted Saliency Map and Laplacian Eigenmaps

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Xiaoping Liang;Zhenjun Tang;Xianquan Zhang;Xinpeng Zhang;Ching-Nung Yang
{"title":"Robust Image Hashing With Weighted Saliency Map and Laplacian Eigenmaps","authors":"Xiaoping Liang;Zhenjun Tang;Xianquan Zhang;Xinpeng Zhang;Ching-Nung Yang","doi":"10.1109/TIFS.2024.3516552","DOIUrl":null,"url":null,"abstract":"Copy detection is crucial for protecting image copyright. This paper proposes a robust image hashing approach via Weighted Saliency Map (WSM) and Laplacian Eigenmaps (LE) (hereafter WSM-LE approach). An important contribution is the WSM construction via the edge map and the saliency map. As the WSM can indicate the interest regions of image, hash calculation based on WSM can provide robustness of our WSM-LE approach. Another contribution is the low-dimensional feature learning by the LE technique. As the LE technique can effectively learn the internal geometric relationships of image, the extracted low-dimensional features can improve discrimination of our WSM-LE approach. In addition, the low-dimensional features are treated as vectors and the vector distances are used to create a compact and encrypted hash. Numerous experiments and comparisons are conducted to confirm the effectiveness and superiority of our WSM-LE approach. The results indicate that our WSM-LE approach has excellent classification and copy detection performances than some baseline approaches.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"665-676"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10802924","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10802924/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Copy detection is crucial for protecting image copyright. This paper proposes a robust image hashing approach via Weighted Saliency Map (WSM) and Laplacian Eigenmaps (LE) (hereafter WSM-LE approach). An important contribution is the WSM construction via the edge map and the saliency map. As the WSM can indicate the interest regions of image, hash calculation based on WSM can provide robustness of our WSM-LE approach. Another contribution is the low-dimensional feature learning by the LE technique. As the LE technique can effectively learn the internal geometric relationships of image, the extracted low-dimensional features can improve discrimination of our WSM-LE approach. In addition, the low-dimensional features are treated as vectors and the vector distances are used to create a compact and encrypted hash. Numerous experiments and comparisons are conducted to confirm the effectiveness and superiority of our WSM-LE approach. The results indicate that our WSM-LE approach has excellent classification and copy detection performances than some baseline approaches.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信