{"title":"Faulty Feeder Detection for Successive Single Phase-to-Ground Faults Based on Line Model Recognition and Correlation Comparison","authors":"Jiawei Yuan;Chuan Feng;Yueming Ji;Xintong Liu;Xuan Dong;Jun Liu;Zaibin Jiao","doi":"10.1109/TPWRD.2024.3517836","DOIUrl":null,"url":null,"abstract":"When a single phase-to-ground (SPG) fault occurs in distribution networks, the over-voltages in non-fault phases may cause insulation damage to entire networks, potentially leading to a secondary SPG fault in feeders. Existing detection methods fail to explore the underlying mechanisms of SPG faults, resulting in unsatisfactory detection performance in practical applications. Moreover, they cannot identify the second faulty feeder under successive SPG (SSPG) faults, thereby increasing the risks of bushfires and casualties. This paper proposes a faulty-feeder detection method for SSPG faults based on line model recognition and correlation comparison. Firstly, the fault characteristics under SPG and SSPG faults are analyzed, revealing that differences in the equivalent line models are essential for distinguishing between faulty and healthy feeders. Secondly, the derivative of zero-sequence voltage reflecting the capacitance characteristics is compared with the measured zero-sequence currents from the perspectives of similarity and distance. The first faulty feeder is detected using cosine similarity comparison, while the second faulty feeder is identified using Euclidean distance comparison. Thirdly, a comprehensive detection criterion is constructed based on the cooperation of the similarity comparison method and distance comparison method. The feasibility and applicability are verified using various simulation data, field tests, and practical data tests.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 2","pages":"750-763"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10803106/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
When a single phase-to-ground (SPG) fault occurs in distribution networks, the over-voltages in non-fault phases may cause insulation damage to entire networks, potentially leading to a secondary SPG fault in feeders. Existing detection methods fail to explore the underlying mechanisms of SPG faults, resulting in unsatisfactory detection performance in practical applications. Moreover, they cannot identify the second faulty feeder under successive SPG (SSPG) faults, thereby increasing the risks of bushfires and casualties. This paper proposes a faulty-feeder detection method for SSPG faults based on line model recognition and correlation comparison. Firstly, the fault characteristics under SPG and SSPG faults are analyzed, revealing that differences in the equivalent line models are essential for distinguishing between faulty and healthy feeders. Secondly, the derivative of zero-sequence voltage reflecting the capacitance characteristics is compared with the measured zero-sequence currents from the perspectives of similarity and distance. The first faulty feeder is detected using cosine similarity comparison, while the second faulty feeder is identified using Euclidean distance comparison. Thirdly, a comprehensive detection criterion is constructed based on the cooperation of the similarity comparison method and distance comparison method. The feasibility and applicability are verified using various simulation data, field tests, and practical data tests.
期刊介绍:
The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.