{"title":"Anticoncentration of Random Vectors via the Strong Perfect Graph Theorem","authors":"Tomas Juškevičius, Valentas Kurauskas","doi":"10.1007/s00493-024-00124-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper we give anticoncentration bounds for sums of independent random vectors in finite-dimensional vector spaces. In particular, we asymptotically establish a conjecture of Leader and Radcliffe (SIAM J Discrete Math 7:90–101, 1994) and a question of Jones (SIAM J Appl Math 34:1–6, 1978). The highlight of this work is an application of the strong perfect graph theorem by Chudnovsky et al. (Ann Math 164:51–229, 2006) in the context of anticoncentration.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"39 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00124-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we give anticoncentration bounds for sums of independent random vectors in finite-dimensional vector spaces. In particular, we asymptotically establish a conjecture of Leader and Radcliffe (SIAM J Discrete Math 7:90–101, 1994) and a question of Jones (SIAM J Appl Math 34:1–6, 1978). The highlight of this work is an application of the strong perfect graph theorem by Chudnovsky et al. (Ann Math 164:51–229, 2006) in the context of anticoncentration.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.