Prediction of peptide structural conformations with AlphaFold2.

Alexander M Ille, Christopher Markosian, Stephen K Burley, Renata Pasqualini, Wadih Arap
{"title":"Prediction of peptide structural conformations with AlphaFold2.","authors":"Alexander M Ille, Christopher Markosian, Stephen K Burley, Renata Pasqualini, Wadih Arap","doi":"10.1101/2024.12.03.626727","DOIUrl":null,"url":null,"abstract":"<p><p>Protein structure prediction <i>via</i> artificial intelligence/machine learning (AI/ML) approaches has sparked substantial research interest in structural biology and adjacent disciplines. More recently, AlphaFold2 (AF2) has been adapted for the prediction of multiple structural conformations in addition to single-state structures. This novel avenue of research has focused on proteins (typically 50 residues in length or greater), while multi-conformation prediction of shorter peptides has not yet been explored in this context. Here, we report AF2-based structural conformation prediction of a total of 557 peptides (ranging in length from 10 to 40 residues) for a benchmark dataset with corresponding nuclear magnetic resonance (NMR)-determined conformational ensembles. <i>De novo</i> structure predictions were accompanied by structural comparison analyses to assess prediction accuracy. We found that the prediction of conformational ensembles for peptides with AF2 varied in accuracy <i>versus</i> NMR data, with average root-mean-square deviation (RMSD) among structured regions under 2.5 Å and average root-mean-square fluctuation (RMSF) differences under 1.5 Å. Our results reveal notable capabilities of AF2-based structural conformation prediction for peptides but also underscore the necessity for interpretation discretion.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.03.626727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protein structure prediction via artificial intelligence/machine learning (AI/ML) approaches has sparked substantial research interest in structural biology and adjacent disciplines. More recently, AlphaFold2 (AF2) has been adapted for the prediction of multiple structural conformations in addition to single-state structures. This novel avenue of research has focused on proteins (typically 50 residues in length or greater), while multi-conformation prediction of shorter peptides has not yet been explored in this context. Here, we report AF2-based structural conformation prediction of a total of 557 peptides (ranging in length from 10 to 40 residues) for a benchmark dataset with corresponding nuclear magnetic resonance (NMR)-determined conformational ensembles. De novo structure predictions were accompanied by structural comparison analyses to assess prediction accuracy. We found that the prediction of conformational ensembles for peptides with AF2 varied in accuracy versus NMR data, with average root-mean-square deviation (RMSD) among structured regions under 2.5 Å and average root-mean-square fluctuation (RMSF) differences under 1.5 Å. Our results reveal notable capabilities of AF2-based structural conformation prediction for peptides but also underscore the necessity for interpretation discretion.

利用 AlphaFold2 预测多肽结构构象。
通过人工智能/机器学习(AI/ML)方法进行蛋白质结构预测已在结构生物学及相关学科中引发了巨大的研究兴趣。最近,AlphaFold2(AF2)被用于预测单态结构之外的多种结构构象。这种新的研究途径主要集中在蛋白质(通常长度为 50 个残基或以上)上,而较短肽的多构象预测尚未在此背景下进行探索。在此,我们报告了基于 AF2 的结构构象预测,共预测了 557 种多肽(长度从 10 到 40 个残基不等)的基准数据集和相应的核磁共振(NMR)确定的构象组合。在进行全新结构预测的同时,还进行了结构对比分析,以评估预测的准确性。我们发现,使用 AF2 预测肽的构象组合与核磁共振数据的准确性不同,结构区域之间的平均均方根偏差(RMSD)低于 2.5 Å,平均均方根波动(RMSF)低于 1.5 Å。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信