High resolution imaging and interpretation of three-dimensional RPE sheet structure.

Kevin J Donaldson, Micah A Chrenek, Jeffrey H Boatright, John M Nickerson
{"title":"High resolution imaging and interpretation of three-dimensional RPE sheet structure.","authors":"Kevin J Donaldson, Micah A Chrenek, Jeffrey H Boatright, John M Nickerson","doi":"10.1101/2024.12.04.626881","DOIUrl":null,"url":null,"abstract":"<p><p>The retinal pigment epithelium (RPE), a monolayer of pigmented cells, is critical for visual function through its interaction with the neural retina. In healthy eyes, RPE cells exhibit a uniform hexagonal arrangement, but under stress or disease, such as age-related macular degeneration (AMD), dysmorphic traits like cell enlargement and apparent multinucleation emerge. Multinucleation has been hypothesized to result from cellular fusion, a compensatory mechanism to maintain cell to cell contact, barrier function, and conserve resources in unhealthy tissue. However, traditional two-dimensional (2D) imaging using apical border markers alone may misrepresent multinucleation due to the lack of lateral markers. We present high-resolution confocal images enabling three-dimensional (3D) visualization of apical (ZO-1) and lateral (alpha-catenin) markers alongside nuclei. In two RPE damage models, we find that seemingly multinucleated cells are often single cells with displaced neighboring nuclei and lateral membranes. This emphasizes the need for 3D analyses to avoid misinterpreting multinucleation and underlying fusion mechanisms. Lastly, images from the NaIO3 oxidative damage model reveal variability in RPE damage, with elongated, dysmorphic cells showing increased ZsGreen reporter protein expression driven by EMT-linked CAG promoter activity, while more regular RPE cells displayed somewhat reduced green signal more typical of epithelial phenotypes.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.12.04.626881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The retinal pigment epithelium (RPE), a monolayer of pigmented cells, is critical for visual function through its interaction with the neural retina. In healthy eyes, RPE cells exhibit a uniform hexagonal arrangement, but under stress or disease, such as age-related macular degeneration (AMD), dysmorphic traits like cell enlargement and apparent multinucleation emerge. Multinucleation has been hypothesized to result from cellular fusion, a compensatory mechanism to maintain cell to cell contact, barrier function, and conserve resources in unhealthy tissue. However, traditional two-dimensional (2D) imaging using apical border markers alone may misrepresent multinucleation due to the lack of lateral markers. We present high-resolution confocal images enabling three-dimensional (3D) visualization of apical (ZO-1) and lateral (alpha-catenin) markers alongside nuclei. In two RPE damage models, we find that seemingly multinucleated cells are often single cells with displaced neighboring nuclei and lateral membranes. This emphasizes the need for 3D analyses to avoid misinterpreting multinucleation and underlying fusion mechanisms. Lastly, images from the NaIO3 oxidative damage model reveal variability in RPE damage, with elongated, dysmorphic cells showing increased ZsGreen reporter protein expression driven by EMT-linked CAG promoter activity, while more regular RPE cells displayed somewhat reduced green signal more typical of epithelial phenotypes.

高分辨率成像和三维 RPE 片结构解读。
视网膜色素上皮(RPE)是一种单层的色素细胞,通过与邻近的神经视网膜相互作用,在视觉功能中起着至关重要的作用。RPE细胞呈六边形,呈镶嵌状排列,在健康的眼睛中保持相对均匀的大小和排列。在压力或疾病条件下,如年龄相关性黄斑变性(AMD)和其他遗传性视力障碍,个体RPE细胞畸形已被观察到。这导致了潜在的细胞补偿机制的研究,可能失调,影响适当的屏障结构和功能。一种常见的畸形特征是细胞增大,在二维(2D)上看起来是多核的(包含两个以上的细胞核),免疫组织化学标记的图像从根尖表面的角度来看。多核现象的一种解释是,RPE可能利用持续的细胞融合来维持细胞间的接触,同时保存不健康组织中的细胞资源。虽然这可能是最可能的解释,但在解释传统(2D)图像时应谨慎,这些图像仅使用细胞边界轮廓标记而没有侧面标记。在这里,我们展示了两个高分辨率共聚焦图像的例子,它们允许三维(3D)观察传统的顶端边界划定标记(ZO-1)和细胞核,以及可以作为外侧细胞膜标记的α连环蛋白的标记。我们在两个单独的RPE损伤模型中发现了多个例子,其中扩大的,看似多核的细胞实际上不是多核的,而是由于周围的细胞核和侧细胞膜向中心细胞移动而出现这种情况。当从顶端表面观察时,这些核似乎包含在ZO-1边界内,但从多个角度观察时,情况显然并非如此。这种方法需要在未来的RPE薄片畸形研究中进行更仔细的分析,因为这可能导致对多核现象的潜在误解,进而导致潜在的融合机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信