Orbital magnetism through inverse Faraday effect in metal clusters.

Nanophotonics (Berlin, Germany) Pub Date : 2024-09-16 eCollection Date: 2024-11-01 DOI:10.1515/nanoph-2024-0352
Deru Lian, Yanji Yang, Giovanni Manfredi, Paul-Antoine Hervieux, Rajarshi Sinha-Roy
{"title":"Orbital magnetism through inverse Faraday effect in metal clusters.","authors":"Deru Lian, Yanji Yang, Giovanni Manfredi, Paul-Antoine Hervieux, Rajarshi Sinha-Roy","doi":"10.1515/nanoph-2024-0352","DOIUrl":null,"url":null,"abstract":"<p><p>In view of the recent increased interest in light-induced manipulation of magnetism in nanometric length scales this work presents metal clusters as promising elementary units for generating all-optical ultrafast magnetization. We perform a theoretical study of the opto-magnetic properties of metal clusters through ab-initio real-time (RT) simulations in real-space using time-dependent density functional theory (TDDFT). Through ab-initio calculations of plasmon excitation with circularly polarized laser pulse in atomically precise clusters of simple and noble metals, we discuss the generation of orbital magnetic moments due to the transfer of angular momentum from light field through optical absorption at resonance energies. Notably, in the near-field analysis we observe self-sustained circular motion of the induced electron density corroborating the presence of nanometric current loops which give rise to orbital magnetic moments due to the inverse Faraday effect (IFE) in the clusters. The results provide valuable insights into the quantum many-body effects that influence the IFE-mediated light-induced orbital magnetism in metal clusters depending on its geometry and chemical composition. At the same time, they explicitly demonstrate the possibility for harnessing magnetization in metal clusters, offering potential applications in the field of all-optical manipulation of magnetism.</p>","PeriodicalId":520321,"journal":{"name":"Nanophotonics (Berlin, Germany)","volume":"13 23","pages":"4291-4302"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11636370/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics (Berlin, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the recent increased interest in light-induced manipulation of magnetism in nanometric length scales this work presents metal clusters as promising elementary units for generating all-optical ultrafast magnetization. We perform a theoretical study of the opto-magnetic properties of metal clusters through ab-initio real-time (RT) simulations in real-space using time-dependent density functional theory (TDDFT). Through ab-initio calculations of plasmon excitation with circularly polarized laser pulse in atomically precise clusters of simple and noble metals, we discuss the generation of orbital magnetic moments due to the transfer of angular momentum from light field through optical absorption at resonance energies. Notably, in the near-field analysis we observe self-sustained circular motion of the induced electron density corroborating the presence of nanometric current loops which give rise to orbital magnetic moments due to the inverse Faraday effect (IFE) in the clusters. The results provide valuable insights into the quantum many-body effects that influence the IFE-mediated light-induced orbital magnetism in metal clusters depending on its geometry and chemical composition. At the same time, they explicitly demonstrate the possibility for harnessing magnetization in metal clusters, offering potential applications in the field of all-optical manipulation of magnetism.

通过金属团簇中的反法拉第效应实现轨道磁性。
鉴于近年来人们对光诱导操纵纳米长度尺度磁性的兴趣与日俱增,本研究将金属团簇作为产生全光超快磁化的有前途的基本单元。我们利用时变密度泛函理论(TDDFT),通过在真实空间中进行非原位实时(RT)模拟,对金属团簇的光磁特性进行了理论研究。通过原子精度的简单金属和贵金属团簇在圆偏振激光脉冲下等离子体激发的非原位计算,我们讨论了在共振能量下由于角动量从光场通过光吸收转移而产生的轨道磁矩。值得注意的是,在近场分析中,我们观察到了诱导电子密度的自持圆周运动,这证实了纳米电流环的存在,而这些电流环又会由于星团中的反法拉第效应(IFE)而产生轨道磁矩。这些结果为我们深入了解量子多体效应提供了宝贵的视角,这些效应会根据金属簇的几何形状和化学成分影响 IFE 介导的光诱导轨道磁性。同时,它们明确证明了利用金属团簇磁化的可能性,为全光操纵磁性领域提供了潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信