TargetSA: adaptive simulated annealing for target-specific drug design.

Zhe Xue, Chenwei Sun, Wenhao Zheng, Jiancheng Lv, Xianggen Liu
{"title":"TargetSA: adaptive simulated annealing for target-specific drug design.","authors":"Zhe Xue, Chenwei Sun, Wenhao Zheng, Jiancheng Lv, Xianggen Liu","doi":"10.1093/bioinformatics/btae730","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The burgeoning field of target-specific drug design has attracted considerable attention, focusing on identifying compounds with high binding affinity toward specific target pockets. Nevertheless, existing target-specific deep generative models encounter notable challenges. Some models heavily rely on elaborate datasets and complicated training methodologies, while others neglect the multi-constraint optimization problem inherent in drug design, resulting in generated molecules with irrational structures or chemical properties.</p><p><strong>Results: </strong>To address these issues, we propose a novel framework (TargetSA) that leverages adaptive simulated annealing (SA) for target-specific molecular generation and multi-constraint optimization. The SA process explores the discrete structural space of molecules, progressively converging toward the optimal solution that fulfills the predefined objective. To propose novel compounds, we first predict promising editing positions based on historical experience, and then iteratively edit molecular graphs through four operations (insertion, replacement, deletion, and cyclization). Together, these operations collectively constitute a complete operation set, facilitating a thorough exploration of the drug-like space. Furthermore, we introduce a reversible sampling strategy to re-accept currently suboptimal solutions, greatly enhancing the generation quality. Empirical evaluations demonstrate that TargetSA achieves state-of-the-art performance in generating high-affinity molecules (average vina dock -9.09) while maintaining desirable chemical properties.</p><p><strong>Availability and implementation: </strong>https://github.com/XueZhe-Zachary/TargetSA.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The burgeoning field of target-specific drug design has attracted considerable attention, focusing on identifying compounds with high binding affinity toward specific target pockets. Nevertheless, existing target-specific deep generative models encounter notable challenges. Some models heavily rely on elaborate datasets and complicated training methodologies, while others neglect the multi-constraint optimization problem inherent in drug design, resulting in generated molecules with irrational structures or chemical properties.

Results: To address these issues, we propose a novel framework (TargetSA) that leverages adaptive simulated annealing (SA) for target-specific molecular generation and multi-constraint optimization. The SA process explores the discrete structural space of molecules, progressively converging toward the optimal solution that fulfills the predefined objective. To propose novel compounds, we first predict promising editing positions based on historical experience, and then iteratively edit molecular graphs through four operations (insertion, replacement, deletion, and cyclization). Together, these operations collectively constitute a complete operation set, facilitating a thorough exploration of the drug-like space. Furthermore, we introduce a reversible sampling strategy to re-accept currently suboptimal solutions, greatly enhancing the generation quality. Empirical evaluations demonstrate that TargetSA achieves state-of-the-art performance in generating high-affinity molecules (average vina dock -9.09) while maintaining desirable chemical properties.

Availability and implementation: https://github.com/XueZhe-Zachary/TargetSA.

TargetSA:用于靶标特异性药物设计的自适应模拟退火。
动机蓬勃发展的靶点特异性药物设计领域吸引了大量关注,其重点是识别与特定靶点口袋具有高结合亲和力的化合物。然而,现有的靶点特异性深度生成模型遇到了明显的挑战。一些模型严重依赖于精细的数据集和复杂的训练方法,而另一些模型则忽视了药物设计中固有的多约束优化问题,导致生成的分子结构或化学性质不合理:为了解决这些问题,我们提出了一种新型框架(TargetSA),利用自适应模拟退火(SA)技术生成靶标特异性分子并进行多约束优化。模拟退火过程会探索分子的离散结构空间,并逐步趋向最优,以实现预定目标。为了提出新化合物,我们首先根据历史经验预测有希望的编辑位置,然后通过四种操作(插入、替换、删除和环化)迭代编辑分子图。这些操作共同构成了一个完整的操作集,有助于彻底探索类药物空间。此外,我们还引入了可逆采样策略,重新接受当前的次优解,大大提高了生成质量:经验评估表明,TargetSA 在生成高亲和力分子(平均 Vina Dock -9.09)方面达到了最先进的性能,同时保持了理想的化学特性。代码可用性:https://github.com/XueZhe-Zachary/TargetSA.Supplementary 信息:更多实现细节和实验见补充材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信