Modeling multi-stage disease progression and identifying genetic risk factors via a novel collaborative learning method.

Duo Xi, Minjianan Zhang, Muheng Shang, Lei Du, Junwei Han
{"title":"Modeling multi-stage disease progression and identifying genetic risk factors via a novel collaborative learning method.","authors":"Duo Xi, Minjianan Zhang, Muheng Shang, Lei Du, Junwei Han","doi":"10.1093/bioinformatics/btae728","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Alzheimer's disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations is usually handled separately.</p><p><strong>Results: </strong>To address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large genome-wide association studies to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies.</p><p><strong>Availability and implementation: </strong>The code is publicly available at https://github.com/dulei323/MSColoR.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784593/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Alzheimer's disease (AD) typically progresses gradually for ages rather than suddenly. Thus, staging AD progression in different phases could aid in accurate diagnosis and treatment. In addition, identifying genetic variations that influence AD is critical to understanding the pathogenesis. However, staging the disease progression and identifying genetic variations is usually handled separately.

Results: To address this limitation, we propose a novel sparse multi-stage multi-task mixed-effects collaborative longitudinal regression method (MSColoR). Our method jointly models long disease progression as a multi-stage procedure and identifies genetic risk factors underpinning this complex trajectory. Specifically, MSColoR models multi-stage disease progression using longitudinal neuroimaging-derived phenotypes and associates the fitted disease trajectories with genetic variations at each stage. Furthermore, we collaboratively leverage summary statistics from large genome-wide association studies to improve the powers. Finally, an efficient optimization algorithm is introduced to solve MSColoR. We evaluate our method using both synthetic and real longitudinal neuroimaging and genetic data. Both results demonstrate that MSColoR can reduce modeling errors while identifying more accurate and significant genetic variations compared to other longitudinal methods. Consequently, MSColoR holds great potential as a computational technique for longitudinal brain imaging genetics and AD studies.

Availability and implementation: The code is publicly available at https://github.com/dulei323/MSColoR.

通过新型协作学习方法模拟多阶段疾病进展并识别遗传风险因素。
动机阿尔茨海默病(AD)通常会在不同年龄段逐渐进展,而不是突然发生。因此,对阿尔茨海默病不同阶段的进展进行分期有助于准确诊断和治疗。此外,确定影响阿尔茨海默病的基因变异对于了解发病机制也至关重要。然而,疾病进展的分期和基因变异的鉴定通常是分开进行的:为了解决这一局限性,我们提出了一种新颖的稀疏多阶段多任务混合效应协同纵向回归方法(MSColoR)。我们的方法将疾病的长期进展作为一个多阶段过程进行联合建模,并确定支撑这一复杂轨迹的遗传风险因素。具体来说,MSColoR 利用纵向神经影像衍生表型建立多阶段疾病进展模型,并将拟合的疾病轨迹与每个阶段的遗传变异联系起来。此外,我们还合作利用大型 GWAS 的汇总统计数据来提高功率。最后,我们引入了一种高效的优化算法来求解 MSColoR。我们使用合成和真实的纵向神经影像和遗传数据对我们的方法进行了评估。结果表明,与其他纵向方法相比,MSColoR 可以减少建模误差,同时识别出更准确、更重要的遗传变异。因此,MSColoR 作为一种计算技术,在纵向脑成像遗传学和注意力缺失症研究中具有巨大潜力:代码可通过 https://github.com/dulei323/MSColoR.Supplementary 信息公开获取:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信