Introducing GWAStic: a user-friendly, cross-platform solution for genome-wide association studies and genomic prediction.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-11-12 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae177
Stefanie Lück, Uwe Scholz, Dimitar Douchkov
{"title":"Introducing GWAStic: a user-friendly, cross-platform solution for genome-wide association studies and genomic prediction.","authors":"Stefanie Lück, Uwe Scholz, Dimitar Douchkov","doi":"10.1093/bioadv/vbae177","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Advances in genomics have created an insistent need for accessible tools that simplify complex genetic data analysis, enabling researchers across fields to harness the power of genome-wide association studies and genomic prediction. GWAStic was developed to bridge this gap, providing an intuitive platform that combines artificial intelligence with traditional statistical methods, making sophisticated genomic analysis accessible without requiring deep expertise in statistical software.</p><p><strong>Results: </strong>We present GWAStic, an intuitive, cross-platform desktop application designed to streamline genome-wide association studies and genomic prediction for biological and medical researchers. With a user-friendly graphical interface, GWAStic integrates machine learning and traditional statistical approaches to support genetic analysis. The application accepts inputs from standard text-based Variant Call Formats and PLINK binary files, generating clear graphical outputs, including Manhattan plots, quantile-quantile plots, and genomic prediction correlation plots to enhance data visualization and analysis.</p><p><strong>Availability and implementation: </strong>Project page: https://github.com/snowformatics/gwastic_desktop; GWAStic documentation: https://snowformatics.gitbook.io/product-docs; PyPI: https://pypi.org/project/gwastic-desktop/.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae177"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Advances in genomics have created an insistent need for accessible tools that simplify complex genetic data analysis, enabling researchers across fields to harness the power of genome-wide association studies and genomic prediction. GWAStic was developed to bridge this gap, providing an intuitive platform that combines artificial intelligence with traditional statistical methods, making sophisticated genomic analysis accessible without requiring deep expertise in statistical software.

Results: We present GWAStic, an intuitive, cross-platform desktop application designed to streamline genome-wide association studies and genomic prediction for biological and medical researchers. With a user-friendly graphical interface, GWAStic integrates machine learning and traditional statistical approaches to support genetic analysis. The application accepts inputs from standard text-based Variant Call Formats and PLINK binary files, generating clear graphical outputs, including Manhattan plots, quantile-quantile plots, and genomic prediction correlation plots to enhance data visualization and analysis.

Availability and implementation: Project page: https://github.com/snowformatics/gwastic_desktop; GWAStic documentation: https://snowformatics.gitbook.io/product-docs; PyPI: https://pypi.org/project/gwastic-desktop/.

介绍 GWAStic:全基因组关联研究和基因组预测的用户友好型跨平台解决方案。
动机随着基因组学的发展,人们亟需能够简化复杂基因数据分析的工具,使各领域的研究人员能够利用全基因组关联研究和基因组预测的力量。GWAStic 就是为了弥补这一差距而开发的,它提供了一个将人工智能与传统统计方法相结合的直观平台,使复杂的基因组分析变得易学易用,而无需深厚的统计软件专业知识:我们介绍的 GWAStic 是一款直观、跨平台的桌面应用程序,旨在为生物和医学研究人员简化全基因组关联研究和基因组预测。GWAStic 采用用户友好的图形界面,整合了机器学习和传统统计方法,为遗传分析提供支持。该应用程序接受基于标准文本的变异调用格式和 PLINK 二进制文件的输入,生成清晰的图形输出,包括曼哈顿图、量纲-量纲图和基因组预测相关图,以加强数据的可视化和分析:项目页面:https://github.com/snowformatics/gwastic_desktop;GWAStic 文档:https://snowformatics.gitbook.io/product-docs;PyPI:https://pypi.org/project/gwastic-desktop/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信