epiTCR-KDA: knowledge distillation model on dihedral angles for TCR-peptide prediction.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2024-11-29 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae190
My-Diem Nguyen Pham, Chinh Tran-To Su, Thanh-Nhan Nguyen, Hoai-Nghia Nguyen, Dinh Duy An Nguyen, Hoa Giang, Dinh-Thuc Nguyen, Minh-Duy Phan, Vy Nguyen
{"title":"epiTCR-KDA: knowledge distillation model on dihedral angles for TCR-peptide prediction.","authors":"My-Diem Nguyen Pham, Chinh Tran-To Su, Thanh-Nhan Nguyen, Hoai-Nghia Nguyen, Dinh Duy An Nguyen, Hoa Giang, Dinh-Thuc Nguyen, Minh-Duy Phan, Vy Nguyen","doi":"10.1093/bioadv/vbae190","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The prediction of the T-cell receptor (TCR) and antigen bindings is crucial for advancements in immunotherapy. However, most current TCR-peptide interaction predictors struggle to perform well on unseen data. This limitation may stem from the conventional use of TCR and/or peptide sequences as input, which may not adequately capture their structural characteristics. Therefore, incorporating the structural information of TCRs and peptides into the prediction model is necessary to improve its generalizability.</p><p><strong>Results: </strong>We developed epiTCR-KDA (KDA stands for Knowledge Distillation model on Dihedral Angles), a new predictor of TCR-peptide binding that utilizes the dihedral angles between the residues of the peptide and the TCR as a structural descriptor. This structural information was integrated into a knowledge distillation model to enhance its generalizability. epiTCR-KDA demonstrated competitive prediction performance, with an area under the curve (AUC) of 1.00 for seen data and AUC of 0.91 for unseen data. On public datasets, epiTCR-KDA consistently outperformed other predictors, maintaining a median AUC of 0.93. Further analysis of epiTCR-KDA revealed that the cosine similarity of the dihedral angle vectors between the unseen testing data and training data is crucial for its stable performance. In conclusion, our epiTCR-KDA model represents a significant step forward in developing a highly effective pipeline for antigen-based immunotherapy.</p><p><strong>Availability and implementation: </strong>epiTCR-KDA is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR-KDA).</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae190"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The prediction of the T-cell receptor (TCR) and antigen bindings is crucial for advancements in immunotherapy. However, most current TCR-peptide interaction predictors struggle to perform well on unseen data. This limitation may stem from the conventional use of TCR and/or peptide sequences as input, which may not adequately capture their structural characteristics. Therefore, incorporating the structural information of TCRs and peptides into the prediction model is necessary to improve its generalizability.

Results: We developed epiTCR-KDA (KDA stands for Knowledge Distillation model on Dihedral Angles), a new predictor of TCR-peptide binding that utilizes the dihedral angles between the residues of the peptide and the TCR as a structural descriptor. This structural information was integrated into a knowledge distillation model to enhance its generalizability. epiTCR-KDA demonstrated competitive prediction performance, with an area under the curve (AUC) of 1.00 for seen data and AUC of 0.91 for unseen data. On public datasets, epiTCR-KDA consistently outperformed other predictors, maintaining a median AUC of 0.93. Further analysis of epiTCR-KDA revealed that the cosine similarity of the dihedral angle vectors between the unseen testing data and training data is crucial for its stable performance. In conclusion, our epiTCR-KDA model represents a significant step forward in developing a highly effective pipeline for antigen-based immunotherapy.

Availability and implementation: epiTCR-KDA is available on GitHub (https://github.com/ddiem-ri-4D/epiTCR-KDA).

epiTCR-KDA:用于 TCR 肽预测的二面角知识蒸馏模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信