{"title":"Forbidden codon combinations in error-detecting circular codes.","authors":"Elena Fimmel, Hadi Saleh, Lutz Strüngmann","doi":"10.1007/s12064-024-00431-6","DOIUrl":null,"url":null,"abstract":"<p><p>Circular codes, which are considered as putative remnants of primaeval comma-free codes, have recently become a focal point of research. These codes constitute a secondary type of genetic code, primarily tasked with detecting and preserving the normal reading frame within protein-coding sequences. The identification of a universal code present across various species has sparked numerous theoretical and experimental inquiries. Among these, the exploration of the class of 216 self-complementary <math><msup><mi>C</mi> <mn>3</mn></msup> </math> -codes of maximum size 20 has garnered significant attention. However, the origin of the number 216 lacks a satisfactory explanation, and the mathematical construction of these codes remains elusive. This paper introduces a new software designed to facilitate the construction of self-complementary <math><msup><mi>C</mi> <mn>3</mn></msup> </math> -codes (of maximum size). The approach involves a systematic exclusion of codons, guided by two fundamental mathematical theorems. These theorems demonstrate how codons can be automatically excluded from consideration when imposing requirements such as self-complementarity, circularity or maximality. By leveraging these theorems, our software provides a novel and efficient means to construct these intriguing circular codes, shedding light on their mathematical foundations and contributing to a deeper understanding of their biological significance.</p>","PeriodicalId":54428,"journal":{"name":"Theory in Biosciences","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory in Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12064-024-00431-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Circular codes, which are considered as putative remnants of primaeval comma-free codes, have recently become a focal point of research. These codes constitute a secondary type of genetic code, primarily tasked with detecting and preserving the normal reading frame within protein-coding sequences. The identification of a universal code present across various species has sparked numerous theoretical and experimental inquiries. Among these, the exploration of the class of 216 self-complementary -codes of maximum size 20 has garnered significant attention. However, the origin of the number 216 lacks a satisfactory explanation, and the mathematical construction of these codes remains elusive. This paper introduces a new software designed to facilitate the construction of self-complementary -codes (of maximum size). The approach involves a systematic exclusion of codons, guided by two fundamental mathematical theorems. These theorems demonstrate how codons can be automatically excluded from consideration when imposing requirements such as self-complementarity, circularity or maximality. By leveraging these theorems, our software provides a novel and efficient means to construct these intriguing circular codes, shedding light on their mathematical foundations and contributing to a deeper understanding of their biological significance.
期刊介绍:
Theory in Biosciences focuses on new concepts in theoretical biology. It also includes analytical and modelling approaches as well as philosophical and historical issues. Central topics are:
Artificial Life;
Bioinformatics with a focus on novel methods, phenomena, and interpretations;
Bioinspired Modeling;
Complexity, Robustness, and Resilience;
Embodied Cognition;
Evolutionary Biology;
Evo-Devo;
Game Theoretic Modeling;
Genetics;
History of Biology;
Language Evolution;
Mathematical Biology;
Origin of Life;
Philosophy of Biology;
Population Biology;
Systems Biology;
Theoretical Ecology;
Theoretical Molecular Biology;
Theoretical Neuroscience & Cognition.