The benefits of social insurance system prediction using a hybrid fuzzy time series method.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2024-11-26 eCollection Date: 2024-01-01 DOI:10.7717/peerj-cs.2500
Ahmed Abdelreheem Khalil, Mohamed Abdelaziz Mandour, Ahmed Ali
{"title":"The benefits of social insurance system prediction using a hybrid fuzzy time series method.","authors":"Ahmed Abdelreheem Khalil, Mohamed Abdelaziz Mandour, Ahmed Ali","doi":"10.7717/peerj-cs.2500","DOIUrl":null,"url":null,"abstract":"<p><p>Decision-making in many industries relies heavily on accurate forecasts, including the insurance sector. The Social Insurance System (SIS) in Egypt, operating under a fully funded paradigm, depends on reliable predictions to ensure effective financial planning. This research introduces a hybrid predictive model that combines fuzzy time series (FTS) Markov chains with the tree partition method (TPM) and difference transformation to forecast total pension benefits within Egypt's SIS. A key feature of the proposed model is its ability to optimize the partitioning process, resulting in the creation of nine intervals that reduce computational complexity while maintaining forecasting accuracy. These intervals were consistently applied across all fuzzy time series models for comparison. The model's performance is evaluated using established metrics such as MAPE, Thiels' U statistic, and RMSE. Additionally, prediction interval coverage probability (PICP) and mean prediction interval length (MPIL) are used to assess the quality of prediction intervals, with a 95% prediction interval serving as the baseline. The proposed model achieved a PICP of approximately 95%, indicating well-calibrated prediction intervals, although the MPIL of 424.5 reflects a wider uncertainty range. Despite this, the model balances coverage accuracy and interval precision effectively. The results demonstrate that the proposed model significantly outperforms traditional models like linear regression, ARIMA, and exponential smoothing and conventional FTS models like Song, Chen, Yu, and Cheng by achieving the lowest MAPE with the value of 11.8% for training and 10.65% for testing. This superior performance highlights the model's reliability and potential applicability to further forecasting tasks in the field of insurance and beyond.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"10 ","pages":"e2500"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11639234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2500","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Decision-making in many industries relies heavily on accurate forecasts, including the insurance sector. The Social Insurance System (SIS) in Egypt, operating under a fully funded paradigm, depends on reliable predictions to ensure effective financial planning. This research introduces a hybrid predictive model that combines fuzzy time series (FTS) Markov chains with the tree partition method (TPM) and difference transformation to forecast total pension benefits within Egypt's SIS. A key feature of the proposed model is its ability to optimize the partitioning process, resulting in the creation of nine intervals that reduce computational complexity while maintaining forecasting accuracy. These intervals were consistently applied across all fuzzy time series models for comparison. The model's performance is evaluated using established metrics such as MAPE, Thiels' U statistic, and RMSE. Additionally, prediction interval coverage probability (PICP) and mean prediction interval length (MPIL) are used to assess the quality of prediction intervals, with a 95% prediction interval serving as the baseline. The proposed model achieved a PICP of approximately 95%, indicating well-calibrated prediction intervals, although the MPIL of 424.5 reflects a wider uncertainty range. Despite this, the model balances coverage accuracy and interval precision effectively. The results demonstrate that the proposed model significantly outperforms traditional models like linear regression, ARIMA, and exponential smoothing and conventional FTS models like Song, Chen, Yu, and Cheng by achieving the lowest MAPE with the value of 11.8% for training and 10.65% for testing. This superior performance highlights the model's reliability and potential applicability to further forecasting tasks in the field of insurance and beyond.

使用混合模糊时间序列法预测社会保险系统的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信