Mario Mietzsch, Manasi Kamat, Kari Basso, Paul Chipman, Juha T Huiskonen, Robert McKenna
{"title":"Structural characterization and epitope mapping of the AAVX affinity purification ligand.","authors":"Mario Mietzsch, Manasi Kamat, Kari Basso, Paul Chipman, Juha T Huiskonen, Robert McKenna","doi":"10.1016/j.omtm.2024.101377","DOIUrl":null,"url":null,"abstract":"<p><p>The application of adeno-associated virus (AAV) vectors in human gene therapies requires reproducible and homogeneous preparations for clinical efficacy and safety. For the AAV production process, often scalable affinity chromatography columns are utilized, such as the POROS CaptureSelect AAVX affinity resin, during downstream processing to ensure highly purified AAV vectors. The AAVX ligand is based on a camelid single-domain antibody capturing a wide range of recombinant AAV capsids. Described here is the identification of the AAV8 capsid epitope to AAVX at 2.3 Å resolution using cryo-electron microscopy. The ligand binds near the 5-fold axis of the capsid in a similar manner to the previously characterized AVB affinity ligand but does not conform to the capsid's icosahedral symmetry. The cross-reactivity of AAVX to other AAV capsids is achieved by primarily interacting with the peptide backbone of the AAV capsid's structurally conserved DE and HI loops. These observations will guide AAV capsid engineering efforts to retain the ability of future recombinant capsid designs to be purified using antibody-based affinity ligands.</p>","PeriodicalId":54333,"journal":{"name":"Molecular Therapy-Methods & Clinical Development","volume":"32 4","pages":"101377"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy-Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2024.101377","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The application of adeno-associated virus (AAV) vectors in human gene therapies requires reproducible and homogeneous preparations for clinical efficacy and safety. For the AAV production process, often scalable affinity chromatography columns are utilized, such as the POROS CaptureSelect AAVX affinity resin, during downstream processing to ensure highly purified AAV vectors. The AAVX ligand is based on a camelid single-domain antibody capturing a wide range of recombinant AAV capsids. Described here is the identification of the AAV8 capsid epitope to AAVX at 2.3 Å resolution using cryo-electron microscopy. The ligand binds near the 5-fold axis of the capsid in a similar manner to the previously characterized AVB affinity ligand but does not conform to the capsid's icosahedral symmetry. The cross-reactivity of AAVX to other AAV capsids is achieved by primarily interacting with the peptide backbone of the AAV capsid's structurally conserved DE and HI loops. These observations will guide AAV capsid engineering efforts to retain the ability of future recombinant capsid designs to be purified using antibody-based affinity ligands.
期刊介绍:
The aim of Molecular Therapy—Methods & Clinical Development is to build upon the success of Molecular Therapy in publishing important peer-reviewed methods and procedures, as well as translational advances in the broad array of fields under the molecular therapy umbrella.
Topics of particular interest within the journal''s scope include:
Gene vector engineering and production,
Methods for targeted genome editing and engineering,
Methods and technology development for cell reprogramming and directed differentiation of pluripotent cells,
Methods for gene and cell vector delivery,
Development of biomaterials and nanoparticles for applications in gene and cell therapy and regenerative medicine,
Analysis of gene and cell vector biodistribution and tracking,
Pharmacology/toxicology studies of new and next-generation vectors,
Methods for cell isolation, engineering, culture, expansion, and transplantation,
Cell processing, storage, and banking for therapeutic application,
Preclinical and QC/QA assay development,
Translational and clinical scale-up and Good Manufacturing procedures and process development,
Clinical protocol development,
Computational and bioinformatic methods for analysis, modeling, or visualization of biological data,
Negotiating the regulatory approval process and obtaining such approval for clinical trials.