Flexible Bayesian Product Mixture Models for Vector Autoregressions.

IF 4.3 3区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Journal of Machine Learning Research Pub Date : 2024-04-01
Suprateek Kundu, Joshua Lukemire
{"title":"Flexible Bayesian Product Mixture Models for Vector Autoregressions.","authors":"Suprateek Kundu, Joshua Lukemire","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian non-parametric methods based on Dirichlet process mixtures have seen tremendous success in various domains and are appealing in being able to borrow information by clustering samples that share identical parameters. However, such methods can face hurdles in heterogeneous settings where objects are expected to cluster only along a subset of axes or where clusters of samples share only a subset of identical parameters. We overcome such limitations by developing a novel class of product of Dirichlet process location-scale mixtures that enables independent clustering at multiple scales, which results in varying levels of information sharing across samples. First, we develop the approach for independent multivariate data. Subsequently we generalize it to multivariate time-series data under the framework of multi-subject Vector Autoregressive (VAR) models that is our primary focus, which go beyond parametric single-subject VAR models. We establish posterior consistency and develop efficient posterior computation for implementation. Extensive numerical studies involving VAR models show distinct advantages over competing methods in terms of estimation, clustering, and feature selection accuracy. Our resting state fMRI analysis from the Human Connectome Project reveals biologically interpretable connectivity differences between distinct intelligence groups, while another air pollution application illustrates the superior forecasting accuracy compared to alternate methods.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":"25 ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian non-parametric methods based on Dirichlet process mixtures have seen tremendous success in various domains and are appealing in being able to borrow information by clustering samples that share identical parameters. However, such methods can face hurdles in heterogeneous settings where objects are expected to cluster only along a subset of axes or where clusters of samples share only a subset of identical parameters. We overcome such limitations by developing a novel class of product of Dirichlet process location-scale mixtures that enables independent clustering at multiple scales, which results in varying levels of information sharing across samples. First, we develop the approach for independent multivariate data. Subsequently we generalize it to multivariate time-series data under the framework of multi-subject Vector Autoregressive (VAR) models that is our primary focus, which go beyond parametric single-subject VAR models. We establish posterior consistency and develop efficient posterior computation for implementation. Extensive numerical studies involving VAR models show distinct advantages over competing methods in terms of estimation, clustering, and feature selection accuracy. Our resting state fMRI analysis from the Human Connectome Project reveals biologically interpretable connectivity differences between distinct intelligence groups, while another air pollution application illustrates the superior forecasting accuracy compared to alternate methods.

灵活的贝叶斯向量自回归产品混合物模型
基于Dirichlet过程混合的贝叶斯非参数方法在各个领域都取得了巨大的成功,并且能够通过聚类共享相同参数的样本来获取信息。然而,这种方法在异质环境中可能面临障碍,在异质环境中,期望对象仅沿着轴的子集聚集,或者样本集群仅共享相同参数的子集。我们通过开发一种新的狄利克雷过程位置尺度混合物的产品来克服这些限制,该产品能够在多个尺度上独立聚类,从而导致不同水平的样本信息共享。首先,我们开发了独立多元数据的方法。随后,我们将其推广到多主体向量自回归(VAR)模型框架下的多变量时间序列数据,这是我们的重点,它超越了参数化的单主体VAR模型。我们建立了后验一致性,并开发了有效的后验计算实现。大量涉及VAR模型的数值研究表明,在估计、聚类和特征选择准确性方面,VAR模型比其他竞争方法有明显的优势。我们对人类连接组项目的静息状态fMRI分析揭示了不同智力群体之间生物学上可解释的连接差异,而另一个空气污染应用表明,与其他方法相比,预测准确性更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Machine Learning Research
Journal of Machine Learning Research 工程技术-计算机:人工智能
CiteScore
18.80
自引率
0.00%
发文量
2
审稿时长
3 months
期刊介绍: The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online. JMLR has a commitment to rigorous yet rapid reviewing. JMLR seeks previously unpublished papers on machine learning that contain: new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature; experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems; accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods; formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks; development of new analytical frameworks that advance theoretical studies of practical learning methods; computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信