Delecia Utley, Brianne Edwards, Asa Budnick, Erich Grotewold, Heike Sederoff
{"title":"Camelina circRNA landscape: Implications for gene regulation and fatty acid metabolism.","authors":"Delecia Utley, Brianne Edwards, Asa Budnick, Erich Grotewold, Heike Sederoff","doi":"10.1002/tpg2.20537","DOIUrl":null,"url":null,"abstract":"<p><p>Circular RNAs (circRNAs) are closed-loop RNAs forming a covalent bond between their 3' and 5' ends, the back splice junction (BSJ), rendering them resistant to exonucleases and thus more stable compared to linear RNAs. Identification of circRNAs and distinction from their cognate linear RNA is only possible by sequencing the BSJ that is unique to the circRNA. CircRNAs are involved in the regulation of their cognate RNAs by increasing transcription rates, RNA stability, and alternative splicing. We have identified circRNAs from C. sativa that are associated with the regulation of germination, light response, and lipid metabolism. We sequenced light-grown and etiolated seedlings after 5 or 7 days post-germination and identified a total of 3447 circRNAs from 2763 genes. Most circRNAs originate from a single homeolog of the three subgenomes from allohexaploid camelina and correlate with higher ratios of alternative splicing of their cognate genes. A network analysis shows the interactions of select miRNA:circRNA:mRNAs for regulation of transcript stabilities where circRNA can act as a competing endogenous RNA. Several key lipid metabolism genes can generate circRNA, and we confirmed the presence of KASII circRNA as a true circRNA. CircRNA in camelina can be a novel target for breeding and engineering efforts.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20537"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20537","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Circular RNAs (circRNAs) are closed-loop RNAs forming a covalent bond between their 3' and 5' ends, the back splice junction (BSJ), rendering them resistant to exonucleases and thus more stable compared to linear RNAs. Identification of circRNAs and distinction from their cognate linear RNA is only possible by sequencing the BSJ that is unique to the circRNA. CircRNAs are involved in the regulation of their cognate RNAs by increasing transcription rates, RNA stability, and alternative splicing. We have identified circRNAs from C. sativa that are associated with the regulation of germination, light response, and lipid metabolism. We sequenced light-grown and etiolated seedlings after 5 or 7 days post-germination and identified a total of 3447 circRNAs from 2763 genes. Most circRNAs originate from a single homeolog of the three subgenomes from allohexaploid camelina and correlate with higher ratios of alternative splicing of their cognate genes. A network analysis shows the interactions of select miRNA:circRNA:mRNAs for regulation of transcript stabilities where circRNA can act as a competing endogenous RNA. Several key lipid metabolism genes can generate circRNA, and we confirmed the presence of KASII circRNA as a true circRNA. CircRNA in camelina can be a novel target for breeding and engineering efforts.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.