Multi-Scale Representation Learning for Protein Fitness Prediction.

ArXiv Pub Date : 2024-12-02
Zuobai Zhang, Pascal Notin, Yining Huang, Aurélie Lozano, Vijil Chenthamarakshan, Debora Marks, Payel Das, Jian Tang
{"title":"Multi-Scale Representation Learning for Protein Fitness Prediction.","authors":"Zuobai Zhang, Pascal Notin, Yining Huang, Aurélie Lozano, Vijil Chenthamarakshan, Debora Marks, Payel Das, Jian Tang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Designing novel functional proteins crucially depends on accurately modeling their fitness landscape. Given the limited availability of functional annotations from wet-lab experiments, previous methods have primarily relied on self-supervised models trained on vast, unlabeled protein sequence or structure datasets. While initial protein representation learning studies solely focused on either sequence or structural features, recent hybrid architectures have sought to merge these modalities to harness their respective strengths. However, these sequence-structure models have so far achieved only incremental improvements when compared to the leading sequence-only approaches, highlighting unresolved challenges effectively leveraging these modalities together. Moreover, the function of certain proteins is highly dependent on the granular aspects of their surface topology, which have been overlooked by prior models. To address these limitations, we introduce the Sequence-Structure-Surface Fitness (S3F) model - a novel multimodal representation learning framework that integrates protein features across several scales. Our approach combines sequence representations from a protein language model with Geometric Vector Perceptron networks encoding protein backbone and detailed surface topology. The proposed method achieves state-of-the-art fitness prediction on the ProteinGym benchmark encompassing 217 substitution deep mutational scanning assays, and provides insights into the determinants of protein function. Our code is at https://github.com/DeepGraphLearning/S3F.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Designing novel functional proteins crucially depends on accurately modeling their fitness landscape. Given the limited availability of functional annotations from wet-lab experiments, previous methods have primarily relied on self-supervised models trained on vast, unlabeled protein sequence or structure datasets. While initial protein representation learning studies solely focused on either sequence or structural features, recent hybrid architectures have sought to merge these modalities to harness their respective strengths. However, these sequence-structure models have so far achieved only incremental improvements when compared to the leading sequence-only approaches, highlighting unresolved challenges effectively leveraging these modalities together. Moreover, the function of certain proteins is highly dependent on the granular aspects of their surface topology, which have been overlooked by prior models. To address these limitations, we introduce the Sequence-Structure-Surface Fitness (S3F) model - a novel multimodal representation learning framework that integrates protein features across several scales. Our approach combines sequence representations from a protein language model with Geometric Vector Perceptron networks encoding protein backbone and detailed surface topology. The proposed method achieves state-of-the-art fitness prediction on the ProteinGym benchmark encompassing 217 substitution deep mutational scanning assays, and provides insights into the determinants of protein function. Our code is at https://github.com/DeepGraphLearning/S3F.

蛋白质适宜性预测的多尺度表征学习
设计新型功能蛋白质的关键在于准确模拟其适应性景观。由于从湿实验室实验中获得的功能注释有限,以前的方法主要依赖于在大量未标记的蛋白质序列或结构数据集上训练的自监督模型。最初的蛋白质表征学习研究只关注序列或结构特征,而最近的混合架构则试图融合这两种模式,利用它们各自的优势。然而,与领先的纯序列方法相比,这些序列-结构模型迄今只取得了逐步的改进,凸显出有效利用这些模式的挑战尚未解决。此外,某些蛋白质的功能在很大程度上取决于其表面拓扑结构的细粒度,而之前的模型却忽略了这一点。为了解决这些局限性,我们引入了序列-结构-表面适配性(S3F)模型--一种新颖的多模态表征学习框架,它整合了多个尺度的蛋白质特征。我们的方法将蛋白质语言模型的序列表示与编码蛋白质骨架和详细表面拓扑结构的几何矢量感知器网络相结合。所提出的方法在包括 217 个置换深度突变扫描实验的 ProteinGym 基准上实现了最先进的适配性预测,并提供了对蛋白质功能决定因素的见解。我们的代码见 https://github.com/DeepGraphLearning/S3F。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信