Identification and validation of a prognostic risk model based on radiosensitivity-related genes in nasopharyngeal carcinoma.

IF 4.5 2区 医学 Q1 ONCOLOGY
Yi Li, Xinyi Hong, Wenqian Xu, Jinhong Guo, Yongyuan Su, Haolan Li, Yingjie Xie, Xing Chen, Xiong Zheng, Sufang Qiu
{"title":"Identification and validation of a prognostic risk model based on radiosensitivity-related genes in nasopharyngeal carcinoma.","authors":"Yi Li, Xinyi Hong, Wenqian Xu, Jinhong Guo, Yongyuan Su, Haolan Li, Yingjie Xie, Xing Chen, Xiong Zheng, Sufang Qiu","doi":"10.1016/j.tranon.2024.102243","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite advancements with intensity-modulated radiation therapy (IMRT), about 10 % of nasopharyngeal carcinoma (NPC) patients remain resistant to radiotherapy, leading to recurrence and poor prognosis. This study aims to identify radiosensitivity-related genes in NPC and develop a prognostic model to predict patient outcomes.</p><p><strong>Methods: </strong>We analyzed 179 NPC samples from Fujian Cancer Hospital using RNA sequencing. Differentially expressed genes (DEGs) were identified between radiotherapy-sensitive and resistant samples. Machine learning algorithms and Cox regression were used to construct a prognostic risk model, validated in the GSE102349 dataset. Additional analyses included functional pathway, immune infiltration, and drug sensitivity.</p><p><strong>Results: </strong>A risk model based on six genes (LCN8, IGSF1, RIMS2, RBP4, TBX10, ETV4) was developed. Kaplan-Meier analysis showed significantly shorter progression-free survival (PFS) in the high-risk group. The model's AUC values were 0.872, 0.807, and 0.802 for 1-year, 3-year, and 5-year predictions. A nomogram including clinical factors was created, and enrichment analysis linked the high-risk group to radiotherapy resistance mechanisms.</p><p><strong>Conclusions: </strong>This study established a novel radiosensitivity-related prognostic model, offering insights into NPC prognosis and radiotherapy resistance mechanisms.</p>","PeriodicalId":23244,"journal":{"name":"Translational Oncology","volume":"52 ","pages":"102243"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tranon.2024.102243","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Despite advancements with intensity-modulated radiation therapy (IMRT), about 10 % of nasopharyngeal carcinoma (NPC) patients remain resistant to radiotherapy, leading to recurrence and poor prognosis. This study aims to identify radiosensitivity-related genes in NPC and develop a prognostic model to predict patient outcomes.

Methods: We analyzed 179 NPC samples from Fujian Cancer Hospital using RNA sequencing. Differentially expressed genes (DEGs) were identified between radiotherapy-sensitive and resistant samples. Machine learning algorithms and Cox regression were used to construct a prognostic risk model, validated in the GSE102349 dataset. Additional analyses included functional pathway, immune infiltration, and drug sensitivity.

Results: A risk model based on six genes (LCN8, IGSF1, RIMS2, RBP4, TBX10, ETV4) was developed. Kaplan-Meier analysis showed significantly shorter progression-free survival (PFS) in the high-risk group. The model's AUC values were 0.872, 0.807, and 0.802 for 1-year, 3-year, and 5-year predictions. A nomogram including clinical factors was created, and enrichment analysis linked the high-risk group to radiotherapy resistance mechanisms.

Conclusions: This study established a novel radiosensitivity-related prognostic model, offering insights into NPC prognosis and radiotherapy resistance mechanisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Oncology
Translational Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
7.20
自引率
2.00%
发文量
314
审稿时长
6-12 weeks
期刊介绍: Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信