Diagnostic artificial intelligence model predicts lymph node status in non-small cell lung cancer using simplified examination.

IF 2.1 3区 医学 Q3 RESPIRATORY SYSTEM
Journal of thoracic disease Pub Date : 2024-11-30 Epub Date: 2024-11-18 DOI:10.21037/jtd-24-1067
Ryuichi Yoshimura, Yoshitaka Endo, Takuya Akashi, Hiroyuki Deguchi, Makoto Tomoyasu, Wataru Shigeeda, Yuka Kaneko, Hajime Saito
{"title":"Diagnostic artificial intelligence model predicts lymph node status in non-small cell lung cancer using simplified examination.","authors":"Ryuichi Yoshimura, Yoshitaka Endo, Takuya Akashi, Hiroyuki Deguchi, Makoto Tomoyasu, Wataru Shigeeda, Yuka Kaneko, Hajime Saito","doi":"10.21037/jtd-24-1067","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) technology was introduced in medical data area and applied disease prediction models. This study aimed to establish an AI model for predicting lymph node metastasis based on simple medical examinations in patients with non-small cell lung cancer (NSCLC).</p><p><strong>Methods: </strong>We retrospectively analyzed 988 patients with NSCLC who underwent radical pulmonary resection with mediastinal lymph node dissection between January 2011 and October 2022. We collected clinical characteristics including age, sex, smoking history, tumor marker levels, tumor side, segment location, total tumor size, solid tumor size and consolidation-to-tumor ratio, obtainable from medical interview, blood tests and plain computed tomography (CT) of the chest. All patients were randomly classified into a training set (n=790) and a validation set (n=198). Six algorithms including Support Vector Classification (SVC), k-nearest neighbor algorithm (k-NN), logistic regression (LR), random forest (RF), gradient boosting (GB) and multilayer perceptron (MLP) were created to decide the lymph node metastasis.</p><p><strong>Results: </strong>The GB model showed the best diagnostic performance, with 80.0% accuracy, 95.6% specificity and an area under the curve (AUC) of 0.75.</p><p><strong>Conclusions: </strong>An AI model showed high specificity and accuracy for predicting lymph node metastasis. These models have potential to categorize suitable surgical procedures for NSCLC patients without needing contrast-enhanced CT or positron emission tomography.</p>","PeriodicalId":17542,"journal":{"name":"Journal of thoracic disease","volume":"16 11","pages":"7320-7328"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635210/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thoracic disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/jtd-24-1067","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Artificial intelligence (AI) technology was introduced in medical data area and applied disease prediction models. This study aimed to establish an AI model for predicting lymph node metastasis based on simple medical examinations in patients with non-small cell lung cancer (NSCLC).

Methods: We retrospectively analyzed 988 patients with NSCLC who underwent radical pulmonary resection with mediastinal lymph node dissection between January 2011 and October 2022. We collected clinical characteristics including age, sex, smoking history, tumor marker levels, tumor side, segment location, total tumor size, solid tumor size and consolidation-to-tumor ratio, obtainable from medical interview, blood tests and plain computed tomography (CT) of the chest. All patients were randomly classified into a training set (n=790) and a validation set (n=198). Six algorithms including Support Vector Classification (SVC), k-nearest neighbor algorithm (k-NN), logistic regression (LR), random forest (RF), gradient boosting (GB) and multilayer perceptron (MLP) were created to decide the lymph node metastasis.

Results: The GB model showed the best diagnostic performance, with 80.0% accuracy, 95.6% specificity and an area under the curve (AUC) of 0.75.

Conclusions: An AI model showed high specificity and accuracy for predicting lymph node metastasis. These models have potential to categorize suitable surgical procedures for NSCLC patients without needing contrast-enhanced CT or positron emission tomography.

利用简化检查预测非小细胞肺癌淋巴结状态的人工智能诊断模型。
背景:人工智能(AI)技术被引入医疗数据领域并应用于疾病预测模型。本研究旨在根据非小细胞肺癌(NSCLC)患者的简单体检结果,建立预测淋巴结转移的人工智能模型:我们回顾性分析了 2011 年 1 月至 2022 年 10 月间接受根治性肺切除术并行纵隔淋巴结清扫术的 988 例 NSCLC 患者。我们收集了患者的临床特征,包括年龄、性别、吸烟史、肿瘤标志物水平、肿瘤侧位、节段位置、肿瘤总大小、实体瘤大小和合并瘤比,这些特征可通过问诊、血液检查和胸部计算机断层扫描(CT)获得。所有患者被随机分为训练集(790 人)和验证集(198 人)。研究人员创建了包括支持向量分类(SVC)、k-近邻算法(k-NN)、逻辑回归(LR)、随机森林(RF)、梯度提升(GB)和多层感知器(MLP)在内的六种算法来判定淋巴结转移:GB模型的诊断效果最好,准确率为80.0%,特异性为95.6%,曲线下面积(AUC)为0.75:人工智能模型在预测淋巴结转移方面表现出较高的特异性和准确性。这些模型有望在无需对比增强 CT 或正电子发射断层扫描的情况下,为 NSCLC 患者分类适合的手术方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of thoracic disease
Journal of thoracic disease RESPIRATORY SYSTEM-
CiteScore
4.60
自引率
4.00%
发文量
254
期刊介绍: The Journal of Thoracic Disease (JTD, J Thorac Dis, pISSN: 2072-1439; eISSN: 2077-6624) was founded in Dec 2009, and indexed in PubMed in Dec 2011 and Science Citation Index SCI in Feb 2013. It is published quarterly (Dec 2009- Dec 2011), bimonthly (Jan 2012 - Dec 2013), monthly (Jan. 2014-) and openly distributed worldwide. JTD received its impact factor of 2.365 for the year 2016. JTD publishes manuscripts that describe new findings and provide current, practical information on the diagnosis and treatment of conditions related to thoracic disease. All the submission and reviewing are conducted electronically so that rapid review is assured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信