Inhibition of the neddylation E2 enzyme UBE2M in macrophages protects against E. coli-induced sepsis.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xuehuan Wen, Songjie Bai, Guirun Xiong, Huiqing Xiu, Jiahui Li, Jie Yang, Qing Yu, Bingyu Li, Ruomeng Hu, Lanxin Cao, Zhijian Cai, Shufang Zhang, Gensheng Zhang
{"title":"Inhibition of the neddylation E2 enzyme UBE2M in macrophages protects against E. coli-induced sepsis.","authors":"Xuehuan Wen, Songjie Bai, Guirun Xiong, Huiqing Xiu, Jiahui Li, Jie Yang, Qing Yu, Bingyu Li, Ruomeng Hu, Lanxin Cao, Zhijian Cai, Shufang Zhang, Gensheng Zhang","doi":"10.1016/j.jbc.2024.108085","DOIUrl":null,"url":null,"abstract":"<p><p>UBE2M, an essential neddylation E2 enzyme, has been implicated in the pathogenesis of various diseases, including cancers, viral infections, and obesity. However, whether UBE2M is involved in the pathogenesis of bacterial sepsis remains unclear. In an Escherichia coli (E. coli)-induced sepsis mouse model, increased UBE2M expression in macrophages in liver and lung tissues postinfection was observed. To further clarify the role of UBE2M in macrophages, mice with macrophage-specific deletion of UBE2M (Lysm<sup>+</sup>Ube2m<sup>f/f</sup>) were constructed. Compared with control mice, these mice presented decreased levels of proinflammatory cytokines, such as IL-1β, IL-6, and TNF-α; reduced sepsis-induced organ damage; and improved survival. Notably, macrophage-specific deletion of UBE2M did not impair E. coli clearance. In vitro experiments also revealed that UBE2M-deficient macrophages produced fewer proinflammatory cytokines after E. coli infection without hindering E. coli clearance. RNA-sequencing analysis revealed that UBE2M deletion in macrophages after LPS stimulation notably suppressed transcriptional activation within the JAK-STAT and Toll-like receptor signaling pathways, which was further confirmed by gene set enrichment analysis. Additionally, Western blotting results confirmed that UBE2M deletion inhibited the activation of the NF-κB, ERK, and JAK-STAT signaling pathways. In conclusion, our findings indicate that specific deletion of UBE2M in macrophages protects against E. coli-induced sepsis by downregulating the excessive inflammatory response, potentially providing a novel strategy against sepsis by targeting UBE2M.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108085"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108085","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

UBE2M, an essential neddylation E2 enzyme, has been implicated in the pathogenesis of various diseases, including cancers, viral infections, and obesity. However, whether UBE2M is involved in the pathogenesis of bacterial sepsis remains unclear. In an Escherichia coli (E. coli)-induced sepsis mouse model, increased UBE2M expression in macrophages in liver and lung tissues postinfection was observed. To further clarify the role of UBE2M in macrophages, mice with macrophage-specific deletion of UBE2M (Lysm+Ube2mf/f) were constructed. Compared with control mice, these mice presented decreased levels of proinflammatory cytokines, such as IL-1β, IL-6, and TNF-α; reduced sepsis-induced organ damage; and improved survival. Notably, macrophage-specific deletion of UBE2M did not impair E. coli clearance. In vitro experiments also revealed that UBE2M-deficient macrophages produced fewer proinflammatory cytokines after E. coli infection without hindering E. coli clearance. RNA-sequencing analysis revealed that UBE2M deletion in macrophages after LPS stimulation notably suppressed transcriptional activation within the JAK-STAT and Toll-like receptor signaling pathways, which was further confirmed by gene set enrichment analysis. Additionally, Western blotting results confirmed that UBE2M deletion inhibited the activation of the NF-κB, ERK, and JAK-STAT signaling pathways. In conclusion, our findings indicate that specific deletion of UBE2M in macrophages protects against E. coli-induced sepsis by downregulating the excessive inflammatory response, potentially providing a novel strategy against sepsis by targeting UBE2M.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信