{"title":"Characterizing the Modulation and Activation-Triggering Mechanisms of Main-Belt Comets via 3D Thermophysical Modeling of an Ellipsoidal Body","authors":"Yun Zhang, Christine M. Hartzell","doi":"10.1029/2023JE008047","DOIUrl":null,"url":null,"abstract":"<p>Main-belt objects (MBOs) with volatile components provide important insights into the solar system's evolution and the origin of Earth's water. In this study, we employ a 3D thermophysical model to simulate the evolution of a representative ellipsoidal main-belt comet (MBC) and investigate the factors influencing its gas and dust activity. Our results highlight the important role of large obliquities in amplifying the detectability of sublimation-driven dust emission in MBCs. For the modeled ellipsoidal 133P/Elst-Pizarro, we found an obliquity of at least <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>30</mn>\n <mo>°</mo>\n </mrow>\n <annotation> ${\\sim} 30{}^{\\circ}$</annotation>\n </semantics></math> is likely required to sustain a dust production rate of <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>0.01 kg/s (this required obliquity increases to <span></span><math>\n <semantics>\n <mrow>\n <mo>≥</mo>\n <mo>∼</mo>\n <mn>45</mn>\n <mo>°</mo>\n </mrow>\n <annotation> ${\\ge} \\sim 45{}^{\\circ}$</annotation>\n </semantics></math> for a dust production rate of <span></span><math>\n <semantics>\n <mrow>\n <mo>≥</mo>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\ge} \\sim $</annotation>\n </semantics></math>0.1 kg/s). By exploring the influence of locations and sizes of ice-exposed surface regions, we find that both the impact-triggered and landslide-triggered ice-exposure mechanisms can lead to detectable dust and gas activities for the modeled MBC. With probable distributions of ice-exposed surface regions, our results show that MBCs' sublimation-driven activity should be predominantly detectable near perihelion, independent of the true anomaly at solstice and the activation-triggering mechanism. Moreover, we find that the landslide-triggered mechanism results in dual peaks in dust and gas emission curves. This enables potential differentiation between the two mechanisms, suggesting that monitoring of MBCs' activity at various orbital positions is important to discern the underlying activation-triggering mechanism. Our analyses provide quantitative constraints on producing the observable cometary activity in ice-containing MBOs and highlight the importance of studying the rotational evolution and structural dynamics of ice-containing MBOs in characterizing their overall population.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008047","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Main-belt objects (MBOs) with volatile components provide important insights into the solar system's evolution and the origin of Earth's water. In this study, we employ a 3D thermophysical model to simulate the evolution of a representative ellipsoidal main-belt comet (MBC) and investigate the factors influencing its gas and dust activity. Our results highlight the important role of large obliquities in amplifying the detectability of sublimation-driven dust emission in MBCs. For the modeled ellipsoidal 133P/Elst-Pizarro, we found an obliquity of at least is likely required to sustain a dust production rate of 0.01 kg/s (this required obliquity increases to for a dust production rate of 0.1 kg/s). By exploring the influence of locations and sizes of ice-exposed surface regions, we find that both the impact-triggered and landslide-triggered ice-exposure mechanisms can lead to detectable dust and gas activities for the modeled MBC. With probable distributions of ice-exposed surface regions, our results show that MBCs' sublimation-driven activity should be predominantly detectable near perihelion, independent of the true anomaly at solstice and the activation-triggering mechanism. Moreover, we find that the landslide-triggered mechanism results in dual peaks in dust and gas emission curves. This enables potential differentiation between the two mechanisms, suggesting that monitoring of MBCs' activity at various orbital positions is important to discern the underlying activation-triggering mechanism. Our analyses provide quantitative constraints on producing the observable cometary activity in ice-containing MBOs and highlight the importance of studying the rotational evolution and structural dynamics of ice-containing MBOs in characterizing their overall population.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.