Deep Learning-Based Detection of Malignant Bile Duct Stenosis in Fluoroscopy Images of Endoscopic Retrograde Cholangiopancreatography.

IF 3 3区 医学 Q2 GASTROENTEROLOGY & HEPATOLOGY
Digestion Pub Date : 2024-12-13 DOI:10.1159/000543049
Kien Vu Trung, Marcus Hollenbach, Gregory Patrick Veldhuizen, Oliver Lester Saldanha, Jakob Garbe, Jonas Rosendahl, Sebastian Krug, Patrick Michl, Jürgen Feisthammel, Thomas Karlas, Jochen Hampe, Albrecht Hoffmeister, Jakob Nikolas Kather
{"title":"Deep Learning-Based Detection of Malignant Bile Duct Stenosis in Fluoroscopy Images of Endoscopic Retrograde Cholangiopancreatography.","authors":"Kien Vu Trung, Marcus Hollenbach, Gregory Patrick Veldhuizen, Oliver Lester Saldanha, Jakob Garbe, Jonas Rosendahl, Sebastian Krug, Patrick Michl, Jürgen Feisthammel, Thomas Karlas, Jochen Hampe, Albrecht Hoffmeister, Jakob Nikolas Kather","doi":"10.1159/000543049","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The accurate distinction between benign and malignant biliary strictures (BS) poses a significant challenge. Despite the use of bile duct biopsies and brush cytology via endoscopic retrograde cholangiopancreaticography (ERCP), the results remain suboptimal. Single-operator cholangioscopy can enhance the diagnostic yield in BS, but its limited availability and high costs are substantial barriers. Convolutional Neural Network (CNN)-based systems may improve the diagnostic process and enhance reproducibility. Therefore, we assessed the feasibility of using deep learning to differentiate BS using fluoroscopy images during ERCP.</p><p><strong>Methods: </strong>We conducted a retrospective review of adult patients (n=251) from three university centers in Germany (Leipzig, Dresden, Halle) who underwent ERCP. We developed and evaluated a deep learning-based model using fluoroscopy images. The performance of the classifier was evaluated by measuring the area under the receiver operating characteristic curve (AUROC) and we utilized saliency map analyses to understand the decision-making process of the model.</p><p><strong>Results: </strong>In cross-validation experiments, malignant BS were detected with a mean AUROC of 0.89 ± 0.03. The test set of the Leipzig cohort demonstrated an AUROC of 0.90. In two independent external validation cohorts (Dresden, Halle), the deep learning-based classifier achieved an AUROC of 0.72 and 0.76, respectively. The artificial intelligence model's predictions identified plausible characteristics within the fluoroscopy images.</p><p><strong>Conclusion: </strong>By using a deep learning model, we were able to discriminate malignant BS from benign biliary conditions. The application of artificial intelligence enhances the diagnostic yield of malignant BS and should be validated in a prospective design.</p>","PeriodicalId":11315,"journal":{"name":"Digestion","volume":" ","pages":"1-24"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digestion","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000543049","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The accurate distinction between benign and malignant biliary strictures (BS) poses a significant challenge. Despite the use of bile duct biopsies and brush cytology via endoscopic retrograde cholangiopancreaticography (ERCP), the results remain suboptimal. Single-operator cholangioscopy can enhance the diagnostic yield in BS, but its limited availability and high costs are substantial barriers. Convolutional Neural Network (CNN)-based systems may improve the diagnostic process and enhance reproducibility. Therefore, we assessed the feasibility of using deep learning to differentiate BS using fluoroscopy images during ERCP.

Methods: We conducted a retrospective review of adult patients (n=251) from three university centers in Germany (Leipzig, Dresden, Halle) who underwent ERCP. We developed and evaluated a deep learning-based model using fluoroscopy images. The performance of the classifier was evaluated by measuring the area under the receiver operating characteristic curve (AUROC) and we utilized saliency map analyses to understand the decision-making process of the model.

Results: In cross-validation experiments, malignant BS were detected with a mean AUROC of 0.89 ± 0.03. The test set of the Leipzig cohort demonstrated an AUROC of 0.90. In two independent external validation cohorts (Dresden, Halle), the deep learning-based classifier achieved an AUROC of 0.72 and 0.76, respectively. The artificial intelligence model's predictions identified plausible characteristics within the fluoroscopy images.

Conclusion: By using a deep learning model, we were able to discriminate malignant BS from benign biliary conditions. The application of artificial intelligence enhances the diagnostic yield of malignant BS and should be validated in a prospective design.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Digestion
Digestion 医学-胃肠肝病学
CiteScore
7.90
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: ''Digestion'' concentrates on clinical research reports: in addition to editorials and reviews, the journal features sections on Stomach/Esophagus, Bowel, Neuro-Gastroenterology, Liver/Bile, Pancreas, Metabolism/Nutrition and Gastrointestinal Oncology. Papers cover physiology in humans, metabolic studies and clinical work on the etiology, diagnosis, and therapy of human diseases. It is thus especially cut out for gastroenterologists employed in hospitals and outpatient units. Moreover, the journal''s coverage of studies on the metabolism and effects of therapeutic drugs carries considerable value for clinicians and investigators beyond the immediate field of gastroenterology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信