Meclizine seasickness medication and its effect on central nervous system oxygen toxicity in a murine model.

IF 0.8 4区 医学 Q4 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Guy Wiener, Anna Jamison, Dror Tal
{"title":"Meclizine seasickness medication and its effect on central nervous system oxygen toxicity in a murine model.","authors":"Guy Wiener, Anna Jamison, Dror Tal","doi":"10.28920/dhm54.4.296-300","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Diving utilising closed circuit pure oxygen rebreather systems has become popular in professional settings. One of the hazards the oxygen diver faces is central nervous system oxygen toxicity (CNS-OT), causing potentially fatal convulsions. At the same time, divers frequently travel by boat, often suffering seasickness. The over-the-counter medication meclizine is an anticholinergic and antihistaminergic agent that has gained popularity in the treatment of seasickness. Reports have shown the inhibitory effect that acetylcholine has on glutamate, a main component in the mechanism leading to CNS-OT seizure. The goal of the present study was to test the effect of meclizine on the latency to CNS-OT seizures under hyperbaric oxygen conditions.</p><p><strong>Methods: </strong>Twenty male mice were exposed twice to 608 kPa (6 atmospheres) absolute pressure while breathing oxygen after administration of control solution (carboxymethyl cellulose solvent) or drug solution (meclizine) in a randomised crossover design. Latency to tonic-clonic seizures was visually measured.</p><p><strong>Results: </strong>Mean latency to seizure did not significantly differ between the control group (414 s, standard deviation [SD] 113 s) and meclizine group (434 s, SD 174 s).</p><p><strong>Conclusions: </strong>Based on results from this animal model, meclizine may be an appropriate option for divers suffering from seasickness, who plan on diving using pure oxygen rebreather systems.</p>","PeriodicalId":11296,"journal":{"name":"Diving and hyperbaric medicine","volume":"54 4","pages":"296-300"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diving and hyperbaric medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.28920/dhm54.4.296-300","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Diving utilising closed circuit pure oxygen rebreather systems has become popular in professional settings. One of the hazards the oxygen diver faces is central nervous system oxygen toxicity (CNS-OT), causing potentially fatal convulsions. At the same time, divers frequently travel by boat, often suffering seasickness. The over-the-counter medication meclizine is an anticholinergic and antihistaminergic agent that has gained popularity in the treatment of seasickness. Reports have shown the inhibitory effect that acetylcholine has on glutamate, a main component in the mechanism leading to CNS-OT seizure. The goal of the present study was to test the effect of meclizine on the latency to CNS-OT seizures under hyperbaric oxygen conditions.

Methods: Twenty male mice were exposed twice to 608 kPa (6 atmospheres) absolute pressure while breathing oxygen after administration of control solution (carboxymethyl cellulose solvent) or drug solution (meclizine) in a randomised crossover design. Latency to tonic-clonic seizures was visually measured.

Results: Mean latency to seizure did not significantly differ between the control group (414 s, standard deviation [SD] 113 s) and meclizine group (434 s, SD 174 s).

Conclusions: Based on results from this animal model, meclizine may be an appropriate option for divers suffering from seasickness, who plan on diving using pure oxygen rebreather systems.

美克丽嗪晕船药及其对小鼠模型中枢神经系统氧毒性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diving and hyperbaric medicine
Diving and hyperbaric medicine 医学-公共卫生、环境卫生与职业卫生
CiteScore
1.70
自引率
22.20%
发文量
37
审稿时长
>12 weeks
期刊介绍: Diving and Hyperbaric Medicine (DHM) is the combined journal of the South Pacific Underwater Medicine Society (SPUMS) and the European Underwater and Baromedical Society (EUBS). It seeks to publish papers of high quality on all aspects of diving and hyperbaric medicine of interest to diving medical professionals, physicians of all specialties, scientists, members of the diving and hyperbaric industries, and divers. Manuscripts must be offered exclusively to Diving and Hyperbaric Medicine, unless clearly authenticated copyright exemption accompaniesthe manuscript. All manuscripts will be subject to peer review. Accepted contributions will also be subject to editing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信