bb0689 contributes to the virulence of Borrelia burgdorferi in a murine model of Lyme disease.

IF 2.9 3区 医学 Q3 IMMUNOLOGY
Connor Waldron, Sierra George, Christina Thompson, Yu Hsien Liao, Zhiming Ouyang
{"title":"<i>bb0689</i> contributes to the virulence of <i>Borrelia burgdorferi</i> in a murine model of Lyme disease.","authors":"Connor Waldron, Sierra George, Christina Thompson, Yu Hsien Liao, Zhiming Ouyang","doi":"10.1128/iai.00459-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Borrelia burgdorferi</i>, the Lyme disease pathogen, continuously changes its gene expression profile in order to adapt to ticks and mammalian hosts. The alternative sigma factor RpoS plays a central role in borrelial host adaptation. Global transcriptome analyses suggested that more than 100 genes might be regulated by RpoS, but the main part of the regulon remains unexplored. Here, we showed that the expression of <i>bb0689</i>, a gene encoding an outer surface lipoprotein with unknown function, was activated by RpoS. By analyzing gene expression using luciferase reporter assays and quantitative reverse transcription PCR, we found that expression of <i>bb0689</i> was induced by an elevated temperature, a reduced pH, and increased cell density during <i>in vitro</i> cultivation. The transcriptional start site and a functional promoter for gene expression were identified in the 5' regulatory region of <i>bb0689</i>. The promoter was responsive to environmental stimuli and influenced by RpoS. We also showed that <i>bb0689</i> expression was expressed in <i>B. burgdorferi</i> during animal infection, suggesting the importance of this gene for infection. We further generated a <i>bb0689</i> mutant and found that the infectivity of the mutant was severely attenuated in a murine infection model. Although <i>bb0689</i>-deficient spirochetes exhibited no defect during <i>in vitro</i> growth, they were defective in resistance to osmotic stress. <i>Cis</i>-complementation of the mutant with a wild-type copy of <i>bb0689</i> fully rescued all phenotypes. Collectively, these results demonstrate that the RpoS-regulated gene <i>bb0689</i> is a key contributor to the optimal infection of <i>B. burgdorferi</i> in animals.</p>","PeriodicalId":13541,"journal":{"name":"Infection and Immunity","volume":" ","pages":"e0045924"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/iai.00459-24","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Borrelia burgdorferi, the Lyme disease pathogen, continuously changes its gene expression profile in order to adapt to ticks and mammalian hosts. The alternative sigma factor RpoS plays a central role in borrelial host adaptation. Global transcriptome analyses suggested that more than 100 genes might be regulated by RpoS, but the main part of the regulon remains unexplored. Here, we showed that the expression of bb0689, a gene encoding an outer surface lipoprotein with unknown function, was activated by RpoS. By analyzing gene expression using luciferase reporter assays and quantitative reverse transcription PCR, we found that expression of bb0689 was induced by an elevated temperature, a reduced pH, and increased cell density during in vitro cultivation. The transcriptional start site and a functional promoter for gene expression were identified in the 5' regulatory region of bb0689. The promoter was responsive to environmental stimuli and influenced by RpoS. We also showed that bb0689 expression was expressed in B. burgdorferi during animal infection, suggesting the importance of this gene for infection. We further generated a bb0689 mutant and found that the infectivity of the mutant was severely attenuated in a murine infection model. Although bb0689-deficient spirochetes exhibited no defect during in vitro growth, they were defective in resistance to osmotic stress. Cis-complementation of the mutant with a wild-type copy of bb0689 fully rescued all phenotypes. Collectively, these results demonstrate that the RpoS-regulated gene bb0689 is a key contributor to the optimal infection of B. burgdorferi in animals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Infection and Immunity
Infection and Immunity 医学-传染病学
CiteScore
6.00
自引率
6.50%
发文量
268
审稿时长
3 months
期刊介绍: Infection and Immunity (IAI) provides new insights into the interactions between bacterial, fungal and parasitic pathogens and their hosts. Specific areas of interest include mechanisms of molecular pathogenesis, virulence factors, cellular microbiology, experimental models of infection, host resistance or susceptibility, and the generation of innate and adaptive immune responses. IAI also welcomes studies of the microbiome relating to host-pathogen interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信