Work function-activated proton intercalation chemistry assists ultra-stable aqueous zinc ion batteries.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Kaisheng Sun, Yumiao Tian, Meihua Zhu, Shengen Gong, Jiaru Li, Fangfei Li, Liang Li, Xing Meng, Danming Chao
{"title":"Work function-activated proton intercalation chemistry assists ultra-stable aqueous zinc ion batteries.","authors":"Kaisheng Sun, Yumiao Tian, Meihua Zhu, Shengen Gong, Jiaru Li, Fangfei Li, Liang Li, Xing Meng, Danming Chao","doi":"10.1016/j.jcis.2024.12.059","DOIUrl":null,"url":null,"abstract":"<p><p>Manganese oxide (MnO<sub>x</sub>) cathodes with a Zn<sup>2+</sup>/H<sup>+</sup> co-intercalation mixing mechanism have exhibited great potential for aqueous zinc-ion batteries (AZIBs) owing to their high energy density and optimal electrolyte suitability. However, the strong electrostatic interactions and slow kinetics between the high charge density zinc ions and the fixed lattice in conventional cathodes have hindered the development of AZIBs. Hence, selecting H<sup>+</sup> with a smaller ionic radius and reduced electrostatic repulsion as carriers was a feasible strategy. Herein, we developed a series of M-MnO heterojunctions (M = Cu/Co/Ni/Zn) derived from bimetallic metal-organic frameworks (MOF) as cathodes to enable a controllable work function to regulate the proton absorption energy. Therefore, the CO bond derived from the MOF became a fast channel for proton transfer by the bonding effect. Synergistic activation of proton intercalation chemistry by work function and CO bonding. Combined with Density-Functional Theory, the work function exhibited a negative correlation with the proton adsorption energy, which could effectively regulate proton intercalation chemistry. Among them, Cu-MnO delivered optimal electrochemical performance (431.6/150.7 mAh g<sup>-1</sup> at 0.2/5.0 A g<sup>-1</sup>), exhibiting superior cycling stability (98.24 % capacity retention after 12,000 cycles at 5.0 A g<sup>-1</sup>). This study provided insights into the work function versus proton chemistry for the development of high-performance cathode materials for AZIB.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"269-279"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.059","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese oxide (MnOx) cathodes with a Zn2+/H+ co-intercalation mixing mechanism have exhibited great potential for aqueous zinc-ion batteries (AZIBs) owing to their high energy density and optimal electrolyte suitability. However, the strong electrostatic interactions and slow kinetics between the high charge density zinc ions and the fixed lattice in conventional cathodes have hindered the development of AZIBs. Hence, selecting H+ with a smaller ionic radius and reduced electrostatic repulsion as carriers was a feasible strategy. Herein, we developed a series of M-MnO heterojunctions (M = Cu/Co/Ni/Zn) derived from bimetallic metal-organic frameworks (MOF) as cathodes to enable a controllable work function to regulate the proton absorption energy. Therefore, the CO bond derived from the MOF became a fast channel for proton transfer by the bonding effect. Synergistic activation of proton intercalation chemistry by work function and CO bonding. Combined with Density-Functional Theory, the work function exhibited a negative correlation with the proton adsorption energy, which could effectively regulate proton intercalation chemistry. Among them, Cu-MnO delivered optimal electrochemical performance (431.6/150.7 mAh g-1 at 0.2/5.0 A g-1), exhibiting superior cycling stability (98.24 % capacity retention after 12,000 cycles at 5.0 A g-1). This study provided insights into the work function versus proton chemistry for the development of high-performance cathode materials for AZIB.

功函数激活的质子插层化学有助于超稳定水性锌离子电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信