A. S. Gnedenkov, S. L. Sinebryukhov, V. S. Filonina, S. V. Gnedenkov
{"title":"Anticorrosion Hydroxyapatite-Containing Coatings for the Functionalization of Bioresorbable Magnesium Alloys","authors":"A. S. Gnedenkov, S. L. Sinebryukhov, V. S. Filonina, S. V. Gnedenkov","doi":"10.1134/S0040579524700416","DOIUrl":null,"url":null,"abstract":"<div><p>A biocompatible protective coating is formed by plasma electrolytic oxidation (PEO) on the bioresorbable Mg–0.8Ca magnesium alloy. The electrochemical properties and bioresorption mechanism are established for the material, suggesting a model for the process of biodegradation in the alloy with a hydroxyapatite-containing PEO coating in the cultivation medium of mammalian cells.</p></div>","PeriodicalId":798,"journal":{"name":"Theoretical Foundations of Chemical Engineering","volume":"58 2","pages":"250 - 260"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Foundations of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0040579524700416","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A biocompatible protective coating is formed by plasma electrolytic oxidation (PEO) on the bioresorbable Mg–0.8Ca magnesium alloy. The electrochemical properties and bioresorption mechanism are established for the material, suggesting a model for the process of biodegradation in the alloy with a hydroxyapatite-containing PEO coating in the cultivation medium of mammalian cells.
期刊介绍:
Theoretical Foundations of Chemical Engineering is a comprehensive journal covering all aspects of theoretical and applied research in chemical engineering, including transport phenomena; surface phenomena; processes of mixture separation; theory and methods of chemical reactor design; combined processes and multifunctional reactors; hydromechanic, thermal, diffusion, and chemical processes and apparatus, membrane processes and reactors; biotechnology; dispersed systems; nanotechnologies; process intensification; information modeling and analysis; energy- and resource-saving processes; environmentally clean processes and technologies.