{"title":"Insights and guidelines on the Cauchy horizon theorems","authors":"Xiao Yan Chew, Dong-han Yeom","doi":"10.1007/s40042-024-01210-8","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, there has been progress to resolve the issue regarding the non-existence of the Cauchy horizon inside the static, charged, and spherically symmetric black holes. However, when we generically extend the black holes’ spacetime, they are not just static but can be dynamical, thus the interior of black holes does not remain the same as the static case when we take into account the dynamical evolution of black holes. Hence, the properties of the Cauchy horizon could behave differently in the dynamical case. Then, our aim in this paper is to provide a few constructive insights and guidelines regarding this issue by revisiting a few examples of the gravitational collapse of spherically symmetric charged black holes using the double-null formalism. Our numerical results demonstrate that the inside of the outer horizon is no longer static even in late time, and the inner apparent horizon exists but is not regular. The inner apparent horizon can be distinguished clearly from the Cauchy horizon. The spherical symmetric property of black holes allows the inner horizon to be defined in two directions, i.e., the differentiation of the areal radius vanishes along either the out-going or the in-going null direction. Moreover, the Cauchy horizon can be generated from a singularity. Still, the notion of the singularity can be subtle where it can have a vanishing or non-vanishing areal radius; the corresponding curvature quantities could be finite or diverge, although the curvatures can be greater than the Planck scale. Finally, we show some examples that the “hair” which is associated with the matter field on the inner horizon is not important to determine the existence of the Cauchy horizon; rather, the hair on the outer horizon might play an important role on the Cauchy horizon. Therefore, the dynamic properties of the interior of charged black holes could shed light for us to understand deeply about the Cauchy horizon for the extensions of no-Cauchy-horizon theorems.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 12","pages":"1050 - 1061"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01210-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, there has been progress to resolve the issue regarding the non-existence of the Cauchy horizon inside the static, charged, and spherically symmetric black holes. However, when we generically extend the black holes’ spacetime, they are not just static but can be dynamical, thus the interior of black holes does not remain the same as the static case when we take into account the dynamical evolution of black holes. Hence, the properties of the Cauchy horizon could behave differently in the dynamical case. Then, our aim in this paper is to provide a few constructive insights and guidelines regarding this issue by revisiting a few examples of the gravitational collapse of spherically symmetric charged black holes using the double-null formalism. Our numerical results demonstrate that the inside of the outer horizon is no longer static even in late time, and the inner apparent horizon exists but is not regular. The inner apparent horizon can be distinguished clearly from the Cauchy horizon. The spherical symmetric property of black holes allows the inner horizon to be defined in two directions, i.e., the differentiation of the areal radius vanishes along either the out-going or the in-going null direction. Moreover, the Cauchy horizon can be generated from a singularity. Still, the notion of the singularity can be subtle where it can have a vanishing or non-vanishing areal radius; the corresponding curvature quantities could be finite or diverge, although the curvatures can be greater than the Planck scale. Finally, we show some examples that the “hair” which is associated with the matter field on the inner horizon is not important to determine the existence of the Cauchy horizon; rather, the hair on the outer horizon might play an important role on the Cauchy horizon. Therefore, the dynamic properties of the interior of charged black holes could shed light for us to understand deeply about the Cauchy horizon for the extensions of no-Cauchy-horizon theorems.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.