J-selfadjoint matrix means and their indefinite inequalities

IF 0.5 Q3 MATHEMATICS
N. Bebiano, R. Lemos, G. Soares
{"title":"J-selfadjoint matrix means and their indefinite inequalities","authors":"N. Bebiano,&nbsp;R. Lemos,&nbsp;G. Soares","doi":"10.1007/s44146-024-00136-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>J</i> be a non trivial involutive Hermitian matrix. Consider <span>\\({\\mathbb {C}}^n\\)</span> equipped with the indefinite inner product induced by <i>J</i>, <span>\\([x,y]=y^*J x\\)</span> for all <span>\\(x,y\\in {{\\mathbb {C}}}^n,\\)</span> which endows the matrix algebra <span>\\({\\mathbb {C}}^{n\\times n}\\)</span> with a partial order relation <span>\\(\\le ^J\\)</span> between <i>J</i>-selfadjoint matrices. Inde-finite inequalities are given in this setup, involving the <i>J</i>-selfadjoint <span>\\(\\alpha \\)</span>-weighted geometric matrix mean. In particular, an indefinite version of Ando–Hiai inequality is proved to be equivalent to Furuta inequality of indefinite type.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 3-4","pages":"513 - 525"},"PeriodicalIF":0.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-024-00136-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00136-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let J be a non trivial involutive Hermitian matrix. Consider \({\mathbb {C}}^n\) equipped with the indefinite inner product induced by J, \([x,y]=y^*J x\) for all \(x,y\in {{\mathbb {C}}}^n,\) which endows the matrix algebra \({\mathbb {C}}^{n\times n}\) with a partial order relation \(\le ^J\) between J-selfadjoint matrices. Inde-finite inequalities are given in this setup, involving the J-selfadjoint \(\alpha \)-weighted geometric matrix mean. In particular, an indefinite version of Ando–Hiai inequality is proved to be equivalent to Furuta inequality of indefinite type.

J 自交矩阵手段及其不定不等式
让 J 是一个非三乘的内卷赫米矩阵。考虑到矩阵代数 \({\mathbb {C}}^{n 次 n}\) 中的所有 \(x,y\in {{\mathbb {C}}^{n 次 n}\) 都具有由 J 引起的不定内积,即 \([x,y]=y^*J x\) ,它赋予了矩阵代数 \({\mathbb {C}}^{n 次 n}\) J 自交矩阵之间的偏序关系 \(\le ^J\) 。在这个设置中给出了无穷不等式,涉及到 J 自相关(\α \)加权几何矩阵均值。特别是,安多-夏伊不等式的不等式版本被证明等价于不等式类型的古田不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信