New multivariable mean from nonlinear matrix equation associated to the harmonic mean

IF 0.5 Q3 MATHEMATICS
Vatsalkumar N. Mer, Sejong Kim
{"title":"New multivariable mean from nonlinear matrix equation associated to the harmonic mean","authors":"Vatsalkumar N. Mer,&nbsp;Sejong Kim","doi":"10.1007/s44146-024-00132-y","DOIUrl":null,"url":null,"abstract":"<div><p>Various multivariable means have been defined for positive definite matrices, such as the Cartan mean, Wasserstein mean, and Rényi power mean. These multivariable means have corresponding matrix equations. In this paper, we consider the following non-linear matrix equation: </p><div><div><span>$$\\begin{aligned} X = \\left[ \\sum _{i=1}^{n} w_{i} [ (1-t) X + t A_{i} ]^{-1} \\right] ^{-1}, \\end{aligned}$$</span></div></div><p>where <span>\\(t \\in (0,1]\\)</span>. We prove that this equation has a unique solution and define a new mean, which we denote as <span>\\(G_{t}(\\omega ; \\mathbb {A})\\)</span>. We explore important properties of the mean <span>\\(G_{t}(\\omega ; \\mathbb {A})\\)</span> including the relationship with matrix power mean, and show that the mean <span>\\(G_{t}(\\omega ; \\mathbb {A})\\)</span> is monotone in the parameter <i>t</i>. Finally, we connect the mean <span>\\(G_{t}(\\omega ; \\mathbb {A})\\)</span> to a barycenter for the log-determinant divergence.\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 3-4","pages":"605 - 622"},"PeriodicalIF":0.5000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00132-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Various multivariable means have been defined for positive definite matrices, such as the Cartan mean, Wasserstein mean, and Rényi power mean. These multivariable means have corresponding matrix equations. In this paper, we consider the following non-linear matrix equation:

$$\begin{aligned} X = \left[ \sum _{i=1}^{n} w_{i} [ (1-t) X + t A_{i} ]^{-1} \right] ^{-1}, \end{aligned}$$

where \(t \in (0,1]\). We prove that this equation has a unique solution and define a new mean, which we denote as \(G_{t}(\omega ; \mathbb {A})\). We explore important properties of the mean \(G_{t}(\omega ; \mathbb {A})\) including the relationship with matrix power mean, and show that the mean \(G_{t}(\omega ; \mathbb {A})\) is monotone in the parameter t. Finally, we connect the mean \(G_{t}(\omega ; \mathbb {A})\) to a barycenter for the log-determinant divergence.

从与调和平均值相关的非线性矩阵方程得出新的多变量平均值
对于正定矩阵,已经定义了各种多变量均值,如Cartan均值、Wasserstein均值和rsamunyi幂均值。这些多变量均值有相应的矩阵方程。本文考虑以下非线性矩阵方程:$$\begin{aligned} X = \left[ \sum _{i=1}^{n} w_{i} [ (1-t) X + t A_{i} ]^{-1} \right] ^{-1}, \end{aligned}$$其中\(t \in (0,1]\)。我们证明了这个方程有一个唯一解,并定义了一个新均值,记为\(G_{t}(\omega ; \mathbb {A})\)。我们探索了均值\(G_{t}(\omega ; \mathbb {A})\)的重要性质,包括与矩阵幂均值的关系,并表明均值\(G_{t}(\omega ; \mathbb {A})\)在参数t中是单调的。最后,我们将均值\(G_{t}(\omega ; \mathbb {A})\)与对数行列式散度的重心连接起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信