Log-majorization and matrix norm inequalities with application to quantum information

IF 0.5 Q3 MATHEMATICS
Fumio Hiai
{"title":"Log-majorization and matrix norm inequalities with application to quantum information","authors":"Fumio Hiai","doi":"10.1007/s44146-024-00142-w","DOIUrl":null,"url":null,"abstract":"<div><p>We are concerned with log-majorization for matrices in connection with the multivariate Golden–Thompson trace inequality and the Karcher mean (i.e., a multivariate extension of the weighted geometric mean). We show an extension of Araki’s log-majorization and apply it to the <span>\\(\\alpha \\)</span>-<i>z</i>-Rényi divergence in quantum information. We discuss the equality cases in the multivariate trace inequality of Golden–Thompson type and in the norm inequality for the Karcher mean. The paper includes an appendix to correct the proof of the author’s old result on the equality case in the norm inequality for the weighted geometric mean.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"90 3-4","pages":"527 - 549"},"PeriodicalIF":0.5000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00142-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with log-majorization for matrices in connection with the multivariate Golden–Thompson trace inequality and the Karcher mean (i.e., a multivariate extension of the weighted geometric mean). We show an extension of Araki’s log-majorization and apply it to the \(\alpha \)-z-Rényi divergence in quantum information. We discuss the equality cases in the multivariate trace inequality of Golden–Thompson type and in the norm inequality for the Karcher mean. The paper includes an appendix to correct the proof of the author’s old result on the equality case in the norm inequality for the weighted geometric mean.

对数最大化和矩阵范数不等式在量子信息中的应用
我们关注与多元Golden-Thompson迹不等式和Karcher均值(即加权几何均值的多元扩展)相关的矩阵的对数最大化。我们展示了Araki的对数多数化的扩展,并将其应用于量子信息中的\(\alpha \) -z- r nyi散度。讨论了Golden-Thompson型多元迹不等式和Karcher均值范数不等式的等式情况。本文在附录中对作者关于加权几何平均范数不等式中等式情况的旧结果的证明进行了修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信