An investigation on non-Darcian Williamson nanofluid flow stimulated by activation energy resulting from a slick elastic sheet encased in a porous medium
{"title":"An investigation on non-Darcian Williamson nanofluid flow stimulated by activation energy resulting from a slick elastic sheet encased in a porous medium","authors":"Utpal Jyoti Das, Nayan Mani Majumdar","doi":"10.1007/s40042-024-01212-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we explored the mass transfer characteristics of a non-Newtonian Williamson nanofluid flow resulting from a stretched sheet in response to various environmental factors such as chemical reactions, activation energy, non-Darcy porous medium, slip velocity, and viscous dissipation. The primary circumstance under study is one in which a Williamson nanofluid’s viscosity and thermal conductivity differ with temperature. An algorithmic solution to the anticipated problem is presented using the BVP4C method. Consequently, several plots have been generated to illustrate how different physical attributes that emerge in the issues impact concentration, temperature, and velocity profiles. It was found that the slip velocity assumption, magnetic field, activation energy, and the viscous dissipation phenomenon influenced the heat and mass transfer processes. Some key outcomes are: the slip velocity parameter and viscosity parameter reduce the velocity field; the slip velocity parameter and porosity parameter increase the temperature field; activation energy improves the concentration field; and chemical reaction decreases the concentration. There is a strong qualitative agreement between theoretical and numerical results.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 12","pages":"984 - 995"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01212-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we explored the mass transfer characteristics of a non-Newtonian Williamson nanofluid flow resulting from a stretched sheet in response to various environmental factors such as chemical reactions, activation energy, non-Darcy porous medium, slip velocity, and viscous dissipation. The primary circumstance under study is one in which a Williamson nanofluid’s viscosity and thermal conductivity differ with temperature. An algorithmic solution to the anticipated problem is presented using the BVP4C method. Consequently, several plots have been generated to illustrate how different physical attributes that emerge in the issues impact concentration, temperature, and velocity profiles. It was found that the slip velocity assumption, magnetic field, activation energy, and the viscous dissipation phenomenon influenced the heat and mass transfer processes. Some key outcomes are: the slip velocity parameter and viscosity parameter reduce the velocity field; the slip velocity parameter and porosity parameter increase the temperature field; activation energy improves the concentration field; and chemical reaction decreases the concentration. There is a strong qualitative agreement between theoretical and numerical results.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.